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Abstract 

Enhancing user experience is a constant goal for human computer interaction (HCI) 

researchers, and the methods to achieve this goal are widespread, from changing the 

properties of the interface to adapting the task to the user’s ability level. By sensing 

user’s cognitive states, such as interest, workload, frustration, flow, we can adapt the 

interface immediately to keep them working optimally. This new train of thought in the 

brain computer interfaces community considers brain activity as an additional source of 

information, to augment and adapt the interface in conjunction with standard devices, 

instead of controlling it directly with the brain.  

To obtain measures of brain activity, I adopt the relatively less-explored brain sensing 

technique called functional near-infrared spectroscopy (fNIRS), a safe, non-invasive 

measurement of changes in blood oxygenation. This dissertation presents a body of 

technologies and tools that enable the use of real time measures of cognitive load for 

adaptive interfaces, to support the thesis that fNIRS is an input technology usable in 

conventional HCI contexts, especially when applied to the general, healthy public as an 

additional input.  

First, I discuss the practicality and applicability of the technology in realistic, desktop 

environments. Our work shows that fNIRS signals are robust enough to remain 

unaffected by typing and clicking but that some facial and head movements interfere 
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with the measurements. Then, I investigate the use of fNIRS to obtain meaningful data 

related to mental workload. My studies progress from very controlled experiments that 

help us identify centers of brain activity, to experiments using simple user interfaces, 

showing how this technique may be applied to more realistic, complex interfaces. Our 

first study distinguishes levels of workload and interaction styles, and our second 

differentiates levels of game difficulty. Statistical analysis and machine learning 

classification results show that we discriminate well between subjects performing a 

mentally demanding task or resting, and distinguish between two levels with some 

success. Finally, I present a real time analysis and classification system that can 

communicate user cognitive load information to an application. I categorize adaption of 

interfaces with brain as an input, and propose a series of adaptations possible using our 

system.  
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Chapter 1:  

Introduction 

Imagine a device embedded in a hat, or a cap, that could wirelessly transmit the user’s 

cognitive state to their computer. How can it make use of this new information? What 

kind of change in the interface could that lead to? There are many types of interfaces 

that can use such information, and many ways to adapt them. For example, 

entertainment interfaces (such as games) could make use of the subject's affective and 

cognitive state by adapting the interface to keep the user engaged, and to elicit specific 

emotional responses.  

Enhancing user experience is a constant goal for human computer interaction (HCI) 

researchers, and the methods to achieve this goal are widespread, from changing the 

properties of the interface to adapting the task to the user’s ability level. Ideally, those 
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modifications are done automatically, in real time, to obtain maximum benefit. By 

sensing different user properties, such as interest, workload, frustration, flow, we can 

adapt the interface immediately to keep them working optimally. 

Although we can accurately measure task completion time and accuracy, measuring 

cognitive factors such as distraction, surprise or mental workload are typically limited to 

qualitatively observing users or administering subjective surveys to them. These surveys 

are often taken after the completion of a task, potentially missing valuable insight into 

the user’s changing experiences throughout the task. They fail to capture internal details 

of the operator’s mental state, and they are not available in real time to allow interface 

adaptation. Monitoring performance data could address some of these issues. However, 

user performance measures may miss context, as they don’t reflect all of the user’s 

activities, on or off the computer. 

Therefore, new measurements and evaluation techniques that monitor user 

experiences are increasingly necessary. To address these issues, much current research 

focuses on developing objective techniques to measure in real time user states such as 

emotion, workload, and fatigue (Gevins & Smith, 2003; John, et al., 2004; Marshall, 

Pleydell-Pearce, & Dickson, 2003). Although this ongoing research has advanced user 

experience measurements in the HCI field, finding accurate, non-invasive tools to 

measure computer users’ states in real working conditions remains a challenge.  

Brain sensing and imaging techniques, primarily developed for clinical settings, have 

been powerful tools for understanding brain function as well as for diagnosing brain 

injuries or disorders. More recently, these devices have found uses outside of hospital 
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and laboratory settings, and HCI researchers have begun to employ them to understand 

more about the user’s cognitive state relative to the task at hand (e.g. Chen, Hart, & 

Vertegaal, 2008; Grimes, et al., 2008; Sjölie, et al., 2010). Technological advances and 

lower costs associated with the devices have opened a new research area, brain 

computer interfaces. This field is blooming: the ACM Conference on Human Factors in 

Computing Systems CHI 2008 workshop on Brain-Computer Interfaces for HCI and 

Games (Nijholt, et al., 2008) and the CHI 2010 workshop on psychophysiological user 

interaction called Brain Body and Bytes (Girouard, et al., 2010b) are evidence of that. 

 

Figure 1-1. In traditional brain computer interfaces, brain activity is converted into 

predicted tasks, and is the only input to the interface. 

Brain computer interfaces (BCI) are designed to use brain activity as an input for 

interfaces. Most of the current work in the field focuses on letting disabled patients 

communicate with their caretakers and their environment with the sole use of 

electroencephalography (Krepki, et al., 2007; Millán, et al., 2004; Wolpaw, et al., 2002) 

Tasks 

a 

b 

c 
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(Figure 1-1). The resulting interfaces usually let the user select binary choices (e.g. 

yes/no), type or move a mouse, typically by comparing two brain signals together.  

Communicating through traditional BCI systems is currently time consuming and 

mentally demanding. This paradigm requires a great deal of training from the user, to 

learn which type of signals to produce, and from the system, to learn which actions yield 

which signal. The interface is often slow to respond, especially in comparison with 

traditional input technologies (mouse and keyboard). Open research challenges in BCI 

concern the accuracy of such BCI systems (systems often misinterpret a user’s 

intentions) and the information transfer rate of such systems, which are often lacking 

for use in real world settings. 

A new train of thought in the BCI community considers brain activity as an additional 

source of information, to augment and adapt the interface instead of controlling it 

directly with the brain. The new methodology focuses on a broader group of users—the 

general population—for whom current BCIs are impractical because of their slow speed 

of transfer. Passive BCIs are designed to use brain activity as a new input modality, 

allowing the adaptation of the interface in real time according to the user’s mental state 

(Cutrell & Tan, 2008), in conjunction with standard devices such as keyboards and mice 

(Figure 1-2). This type of BCI can capture intentional commands, but is best designed for 

implicit communication (Zander, et al., 2010). 
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Figure 1-2. New brain computer interfaces uses brain activity as an additional input, in 

addition to mouse and keyboard. 

While most BCI research is done in fields such as psychology and biomedical 

engineering, the study of passive BCIs could gain from the knowledge and expertise of 

the field of human computer interaction. HCI studies how to evaluate and improve the 

connection between human and computer, to create seamless interaction. I hope to 

contribute to this effort using the brain. Minnery and Fine (2009) point out in a recent 

interactions article that “only a small percentage of current neuroscience research is 

explicitly aimed at understanding aspects of HCI”. With this thesis, I attempt to bridge 

part of the gap between two fields. 

Neural signals can act as a complementary source of information when combined with 

conventional computer inputs such as the mouse or the keyboard. Work in this thesis 

illustrates this direction in BCI and shows how to move from controlled experiments 

exploring task-specific brain activity to a more general framework using mental activity 

to guide interface response. My work, grounded in the field of human-computer 
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interaction, suggests the practicality and feasibility of using normal untrained brain 

activity to inform interfaces.  

The advantages of using brain sensing to adapt interfaces are numerous (Allanson & 

Fairclough, 2004). Brain activity is continuously available and does not intrude onto the 

operator’s task, while behavioral triggers may be discrete and intermittent (Wilson & 

Russell, 2007). Measuring it passively doesn’t require the user to perform additional 

tasks, and they are continuously available. Finally, there are many aspects of user state 

that are covert, “within the user which can only be detected with weak reliability by 

using overt measures” (Zander, et al., 2010), for instance using brain activity sensing.  

The design challenges for such an unobtrusive, passive, real-time brain interface are 

considerable. As I seek improved interaction for all users, rather than only disabled 

users for whom brain input is a viable alternative to otherwise unavailable arm, leg, or 

other inputs, the goal is to design user interfaces that treat the brain activity as an 

additional input channel, rather than as the primary input. For example, the user 

operates a conventional interface with a mouse, and the interface responds not only to 

the explicit mouse inputs but also to the information measured from the user’s brain, 

letting only critical emails through should the user be in a state of flow. In this case the 

challenge is to design a user interface that makes judicious, subtle, “lightweight” use of 

brain input, rather than using it to, for example, directly drive a cursor. I believe the 

present work points to the ultimate feasibility of such real time input in HCI.  

In this thesis, I associate passive brain computer interfaces and healthy users. However, 

there are situations where non-disabled users might be interested active, or direct BCI, 
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for instance to perform hands free operations. I recognize such situations, but I believe 

that integrating the brain as a passive input in user interfaces covers an explored region 

of the BCI research space. 

While most BCIs use the electroencephalogram to measure brain activity, I adopt the 

relatively less-explored technique of functional near-infrared spectroscopy (fNIRS), a 

non-invasive measurement of changes in blood oxygenation, used to extrapolate levels 

of brain activation (Chance, et al., 1998; Izzetoglu, et al., 2004a). The fNIRS tool is safe, 

portable, non-invasive, and can be implemented wirelessly, allowing for use in real 

world environments (Izzetoglu, et al., 2004a). One of the main benefits of fNIRS is that 

the equipment imposes few physical or behavioral restrictions on the participant (Hoshi, 

2009), as illustrated in Figure 1-3. 

 

Figure 1-3. A participant wearing one fNIRS probe under a sports band. 

Overall, fNIRS output offers potential as an additional parallel, lightweight, continuous 

input channel for users. This additional information from the brain could be used to 

improve the efficiency, effectiveness, or intuitiveness of the user’s interaction with the 

machine as well as to provide new access methods for both healthy and disabled users. 

Previous work using fNIRS for BCI has explored the basic technology and demonstrated 
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the feasibility of distinguishing mental state using such signals (Hirshfield, et al., 2009b; 

Izzetoglu, et al., 2004b; Luu & Chau, 2009). In this thesis I take this research program to 

a more advanced setting, developing method to analyze the signal in real time and 

showing how this can be used in an HCI setting. 

I believe that signals pertaining to the user’s high level cognitive functions are most 

useful for a passive adaptation: the knowledge of the user's frustration levels would 

prove more useful as an additional signal than the knowledge of basic visual signals. In 

this research, I focus on mental workload to improve the interface. I investigate ways to 

obtain workload information the user naturally gives off when using the computer by 

acquiring brain patterns, to automatically enhance their experience. 

1.1 Thesis statement 

This dissertation presents a body of technologies and tools that enable the use of real 

time functional near infrared spectroscopy measures of cognitive load for adaptive 

interfaces. This work is designed to support the following thesis: 

Functional near infrared spectroscopy is an input technology usable in 

conventional human computer interaction contexts, especially when 

applied to the general, healthy public as an additional input.  

I identify three research questions that either shape the body of work presented in this 

thesis or motivate it. (1) What kind of cognitive states can we measure using fNIRS that 

can be useful in HCI contexts? (2) Can this technology be adapted to identify them in 

real time? (3) How should we use this information as input to an adaptive user 
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interface? I also have a subgoal parallel to these questions, to find an accurate method 

for classifying multivariate sequential data we obtain from fNIRS. 

To address my first question, I start by discussing practicality and applicability of the 

technology in realistic, desktop environments (Chapter 3). Ideally, for HCI research, the 

fNIRS signals would be robust enough to remain unaffected by physical activities, such 

as typing, occurring during the participant’s task performance. I will then describe 

studies investigating the use of fNIRS to obtain meaningful data related to mental 

workload (Chapter 4 and 5). My studies progress from very controlled experiments that 

help us identify centers of brain activity, to experiments using simple user interfaces, 

showing how this technique may be applied to more realistic interfaces. In contrast to 

most previous fNIRS studies which only distinguish brain activity from rest, I also focus 

on distinguishing multiple states. Throughout all studies in this thesis, I show the use of 

novel machine learning techniques applied to fNIRS, to classify and use the brain activity 

information. My hypothesis is that useful features extracted from fNIRS data combined 

with machine learning models can accurately determine workload levels that the user 

was experiencing when completing a task in HCI. 

To answer my second question, I transformed the offline processing analyses of fNIRS 

data and present a real time analysis and classification system (Chapter 6). Machine 

learning algorithms were changed to work with incoming data streams, and the 

predicted classification is used in real time interfaces to modify properties according to 

the user’s cognitive load.  
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My third question focuses on creating new interactive, real-time user interfaces, which 

can adapt behavior based on brain measurements. This question serves as motivation 

throughout the thesis and I attempt to answer it in Chapter 6. The design challenge is to 

use this information in a subtle and judicious way, as an additional, lightweight input 

that could make a mouse or keyboard-driven interface more intuitive or efficient. 

Specifically, I am exploring situations and interfaces that can be adapted slowly, in a 

manner that is subtle and unobtrusive to the user, which could increase productivity 

and decrease frustration. I discuss prototypes of user interfaces that can adapt to the 

user's workload profile or other brain activity in real time. 

The motivation for using fNIRS and other brain sensors in HCI research is to pick up 

cognitive state information that is difficult to detect otherwise (Lee & Tan, 2006). It 

should be noted that some changes in cognitive state may also have physical 

manifestations (overt user state). For example, when someone is under stress, his or her 

breathing patterns may change. It may also be possible to make inferences based on the 

contents of the computer screen, or on the input to the computer. However, since these 

can be detected with other methods, I am less interested in picking them up using brain 

sensors. Instead, I are interested in using brain sensors to detect information that does 

not have obvious physical manifestations, and that can only be sensed using tools such 

as fNIRS (covert state).  

1.2 Thesis overview 

The dissertation begins with an exploration of previous work and background 

knowledge that form the foundation of the current research. I describe different types 
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of brain computer interfaces and measurements tools to sense brain activity and issues 

to consider when designing them. I follow with analysis methods for fNIRS data, and 

discuss previous real time work. I then focus on mental workload and techniques used 

to measure it. Finally, I address current work in BCI with an HCI point of view.  

Because functional near-infrared spectroscopy eases many of the restrictions of other 

brain sensors, it has potential to open up new possibilities for HCI research. In Chapter 

3, I identify several considerations and provide guidelines for using fNIRS in realistic HCI 

laboratory settings. Chapter 3 attempts to answer the second part of question one by 

exploring brain sensing in HCI contexts. I empirically examine whether typical human 

behavior (e.g. head and facial movement) or computer interaction (e.g. keyboard and 

mouse usage) interfere with brain measurement using fNIRS. Based on the results of my 

study, I establish which physical behaviors inherent in computer usage interfere with 

accurate fNIRS sensing of cognitive state information, which can be corrected in data 

analysis, and which are acceptable. With these findings, I hope to facilitate further 

adoption of fNIRS brain sensing technology in HCI research.  

Chapter 4 and 5 explore brain signals methods with fNIRS and introduce two studies 

that distinguish different levels of mental workload. They both work towards solving my 

first research question. First, I distinguish levels of user workload and interaction styles. I 

look at four cognitive loads through a color counting task, both on graphical and physical 

objects. I use machine learning to analyze the data. 

The following chapter distinguishes between levels of game difficulty. It describes a 

study designed to lead to adaptive interfaces that respond to the user’s brain activity in 
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real time. Subjects played two levels of the game Pacman while their brain activity was 

measured using fNIRS. Statistical analysis and machine learning classification results 

show that the system can discriminate well between subjects playing or resting, and 

distinguish between the two levels of difficulty with some success.  

The last chapter creates a passive adaptive lightweight interface. I have developed a 

software system that allows for real time brain signal analysis and machine learning 

classification of affective and workload states measured with functional near-infrared 

spectroscopy, called the Online fNIRS Analysis and Classification system (OFAC). My 

system reproduces successful offline procedures, adapting them for real time input to a 

user interface. My first evaluation compares a previous offline analysis with my real 

time analysis. The second study demonstrates the online features of OFAC through the 

real time classification of two tasks, and the adaptation of an interface according to the 

predicted task. With OFAC, I have created the first working real time passive BCI using 

fNIRS, opening the door to building adaptive user interfaces. This chapter answers the 

second research question, and presents a high level discussion of the third question.  
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Chapter 2:  

Background and Related Work 

There are many components that interact in brain computer interfaces research. This 

multidisciplinary work ties fields such as neuroscience, brain anatomy, biomedical 

engineering and computer science. This chapter presents background knowledge and 

related work about brain computer interfaces, brain measurements, analysis methods, 

mental workload and human computer interaction.  

2.1 Brain Computer Interfaces 

A brain computer interface can be loosely defined as an interface controlled directly or 

indirectly by brain activity of the user. The most common types of brain computer 

interfaces use intentionally generated brain activity as the primary input device. They 

are called active BCIs, but they can also be labeled as direct BCIs or BCIs for control. 

Active BCIs are how most researchers define the general term of BCI, for instance by 
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Wolpaw et al. (2002). The original motivation (and conventional view) for such BCIs is to 

provide assistive technology for users with severe physical disabilities, such as paralyzed 

or “locked in” patients, to interact with their environment by translating their brain 

activity into specific device control signals (Adams, Bahr, & Moreno, 2008; Moore, 2003; 

Wolpaw, et al., 2002). This technology provides a new channel of communication that 

allows users to answer simple questions, control their environment, conduct word 

processing, or control prosthetics devices (Schalk, et al., 2004).  

In addition, active BCIs often require the user to be trained to generate specific brain 

states which are interpreted as explicit input. These input behavior are not always 

related to the specific output action, for instance performing motor imagery of the left 

hand to move the cursor up, and motor imagery of the right foot to move it down 

(Mappus, et al., 2009). Daly et al. (2008) state that direct brain computer interfaces are 

unintuitive because of that inconsistency between input and output.  

Active BCIs in contrast with passive BCIs, which detect brain activity that occurs 

naturally during task performance for use as an additional input, in conjunction with 

standard devices such as keyboards and mice (Cutrell & Tan, 2008). Passive BCI can 

detect voluntary input as active BCI, but their use is maximized when detecting signals 

such as emotions, language, and workload as passive BCIs are designed not to require 

the user’s full attention. 

The terms active and passive can be used in other manner within BCI contexts. We 

define them as brain activity input to interfaces: active BCIs when brain signals are the 

only input activating the interface; passive BCIs when the interface reacts to other 
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modalities as well as brain activity. This association follows the work by Cutrell and Tan 

(2008). However, Zander (2010) proposed a classification of brain computer interfaces 

according to the type of mental activity measured: active, passive or reactive. BCIs can 

measure active brain signals—generated intentionally—, passive—spontaneously 

generated states—, or reactive—states generated automatically upon the perception of 

certain stimuli.  

These two paradigms also apply to physiological computing (Allanson & Fairclough, 

2004; Fairclough, 2009). Physiological computing measures psychophysiological signals 

such as heartbeat, respiratory patterns, galvanic skin response, electroencephalography, 

electromyography, and uses them for purposes of biofeedback or interface adaptation. 

As Fairclough (2009) notes, "the physiological computing approach provides one means 

of monitoring, quantifying and representing the context of the user to the system in 

order to enable proactive and implicit adaptation in real-time.” Although Allanson and 

Fairclough (2004) use the expression “brain-computer interface” with a strict definition 

leading only to interfaces directly controlled by the brain, we extend their physiological 

computing principles to BCIs.  

Many traditional brain-computer interfaces, designed for disabled users, require the 

user to be trained to control his or her brain activity, and this brain signal is used 

explicitly as the primary input to the system (Millán, et al., 2004). More recently, it has 

been suggested that untrained users may benefit from systems that use pattern 

recognition and machine learning to classify signals users naturally give off when using a 

computer system (Hirshfield, et al., 2009b; Lee & Tan, 2006). The system would use 

brain sensors to automatically discover aspects of the user’s cognitive state and use this 
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information as passive or implicit input to a system, augmenting any explicit input from 

other devices, and increasing the bandwidth from humans to computers. Ju and Leifer 

(2008) present an interesting framework for implicit interactions.  

There are many issues to consider when designing brain computer interfaces. We 

identify five main categories of BCI characteristics: recording technologies, physiological 

indicators, mental states and experimental strategies, feedback and adaptation, and 

users (Figure 2-1). Each issue will be addressed in this chapter or in the thesis in more 

detail, but they are presented here as a high level preview of what to keep in mind 

when exploring the field of brain computer interfaces. 

 

Figure 2-1. Issues to consider when designing a brain computer interface 
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Other authors have proposed BCI classifications, or elaborated the different 

components of a BCI, such as Pfurtscheller et al. (2007) who identified five components: 

brain signal, type of recording, experimental strategy, mode of operation and feedback. 

The brain computer interface paradigm is analogous to that of eye movement-based 

interaction. Jacob (1993) found two axes to categorize such interaction, one in the 

nature of the eye movements and the other is in the response, with both axes going 

from natural interaction to unnatural, where there is no real-world counterpart. He 

recognized that most of the work up to that point was done with the disabled 

population, and linked unnatural eye movement to unnatural responses, but identified 

the benefit of research that combined natural eye movement with unnatural responses 

for healthy users. This is the direction I take with passive BCIs for healthy users in this 

research.  

2.2 Brain Computer Interface Measurements 

A myriad of brain imaging techniques have been utilized in BCI systems. Neuroimaging 

techniques such as functional magnetic resonance imaging (fMRI), positron emission 

tomography (PET), magneto-encephalography (MEG), electroencephalography (EEG), 

electrocorticography (ECoG), and functional near-infrared spectroscopy (fNIRS) have 

been widely used to learn about human brain anatomy and activity. Coffey et al. (2010) 

provide a detailed table comparing the characteristics of fMRI, MEG, EEG and fNIRS in 

terms of principle of operation (e.g. hemodynamics or electromagnetic), signal 

characteristics (e.g. temporal and spatial resolution), and portability and comfort. 
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Although these techniques provide valuable insight into brain activity, some are very 

costly (mainly MEG, fMRI and PET) and invasive in ways that make them unsuited to 

ordinary HCI settings (ECoG) (Lee & Tan, 2006). For instance, they require motionless 

subjects in constricted positions, and they often expose subjects to hazardous 

radioactive materials (PET) or to loud noises (fMRI) (Izzetoglu, et al., 2004a; Raz, et al., 

2005). In particular, the high magnetic field required for fMRI makes it difficult to 

introduce computer displays or input devices into the room for interaction as it prevents 

any metal in the vicinity. It permits largely passive situations, in which a subject can view 

projected images, but must remain extremely still, and interaction is difficult. 

Electrocorticography implants electrodes directly on the cortex, an invasive technique 

that is not practical for the general population.  

Scerbo et al. (2001) provide a detailed list of the characteristics of a number of 

physiological and brain measures according to the criterions of sensitivity, diagnosticity, 

ease of use, current real world or real time feasibility, cost and intrusiveness, and their 

results are in line with my observations. In a comparison table, Coffey et al. (2010) arrive 

at similar conclusions, identifying EEG and fNIRS as better BCI candidates for space 

applications. Therefore, other techniques are not suitable for evaluating the brain 

activity of subjects under normal working conditions.  

2.2.1 Electroencephalography 

Because it is less invasive than other brain monitoring techniques, EEG has thus far been 

the tool of choice for researchers looking to measure user’s brain activity non-invasively, 

for both brain computer interfaces and other areas such as to learn about neural 
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correlates (Lee & Tan, 2006). EEG measures the electrical activity occurring in the brain 

when neurons fire. There are many approaches to using the EEG signal, especially in real 

time BCI, which include event related potential (ERPs), state visually evoked potentials 

(SSVEP), P300-based BCI, motor imagery, event related synchronization and slow 

cortical potentials (Krepki, et al., 2007). The two currently most common paradigms are 

SSVEP and P300. State visually evoked potentials are brain electrical signals occurring at 

the same frequency of the visual stimuli (between 3.5Hz and 75Hz) (Sutter, 1992). P300 

based BCIs use the positive peak in the signal that occurs around 300ms after infrequent 

visual or auditory stimuli. Wolpaw et al. (2002) present a strong review of EEG based BCI 

systems. 

The fine temporal resolution, ease of use, portability, and low set-up cost have made it 

the most commonly used BCI technique. EEG provides a fast measurement and seems 

appropriate for monitoring both instantaneous (<1s), and short term activity or states 

(<1min). BCI researchers have used machine learning algorithms on EEG data to increase 

system accuracy, system transfer rate, and to transition the burden of translating brain 

activity from the user to the computer. In an attempt to deploy EEG in environments 

beyond the laboratory, Gevins and Smith (2003) designed EEG hardware and data 

processing algorithms that comes closer to being usable in working environments such 

as airplane cockpits.  

Unfortunately, there are a few drawbacks of using EEG. The technology is sensitive to 

subject movement and to interference from electronic devices near the EEG. It is 

susceptible to noise because fluid, bone, and scalp shield the electrodes from actual 

brain activity. For instance, eye blinking produces a large artifact in the signal. Its setup 
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time is non-negligible, around 45-60 minutes in most systems, and it also requires 

placing the electrodes and gel across a user’s scalp (Figure 2-2). 

 

Figure 2-2. The setup for EEG requires placing each electrode individually, after 

applying gel to each location. 

2.2.2 Functional Near-Infrared Spectroscopy 

fNIRS can complement, and in some cases overcome technical/practical limitations of 

EEG and other brain monitoring techniques. While EEG measures electrical activity, 

fNIRS measures blood flow through hemoglobin concentrations and tissue oxygenation 

in the brain (Chance, et al., 1998; Chance, et al., 1993; Maki, et al., 1995; Meek, et al., 

1995; Villringer & Chance, 1997; Villringer, et al., 1993). 

fNIRS uses light sources placed on the scalp to send near-infrared light (in the 

wavelength range 650 - 850 nm) into the head. Biological tissues are relatively 

transparent at these wavelengths, so the light attenuation through tissues is sufficiently 
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low to allow for tissue imaging at depths up to 2-4 centimeters (Bunce, et al., 2006). 

Deoxygenated and oxygenated hemoglobin, present in the blood, are the main 

absorbers of near-infrared light in tissues, and they provide relevant markers of 

hemodynamic and metabolic changes associated with neural activity in the brain. 

Therefore, fNIRS researchers can estimate hemodynamic changes connected to brain 

activation by using light detectors sensitive to the diffusively reflected light that has 

probed the brain cortex (Izzetoglu, et al., 2004b; Sassaroli, et al., 2006).  

 

Figure 2-3. Light path in tissue, between source and detector. 

By measuring the light sent at two wavelengths, we can calculate oxygenated and 

deoxygenated hemoglobin concentrations. Figure 2-3 illustrates the path taken by the 

light. Source fibers deliver light into the tissue. As a result of light scattering, some of the 

light travels through the tissue back to the surface and is collected by the detector. The 

light intensity measured at different source-detector distances is sampled at a 

frequency of a few Hz and translated into concentration changes of oxy and deoxy-

hemoglobin, a measure of blood oxygenation. This results in several time series (one for 

each source-detector channel), providing a multivariate time series dataset that 

corresponds to blood oxygenation. Bunce et al. (2006) and Rolfe (2000) provide good 
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overviews of the fNIRS technology applied to the brain and the photospectrometry 

principles inherent to this technology. 

While fNIRS provides high temporal resolution, with data points measured in the order 

of tenths of milliseconds, the slow hemodynamic changes measured by fNIRS occur in a 

time span of 6-8 sec (Bunce, et al., 2006). Hence, fNIRS is appropriate to measure short 

term states but not instant ones. The spatial resolution of fNIRS is approximately five 

millimeters; the area measured being the one right below the sensor. However, it can 

only measure the cortical surface of the brain (Schroeter, et al., 2006; Tanida, 

Katsuyama, & Sakatani, 2007). In comparison, fMRI has a low temporal resolution but 

allows whole-brain imaging, including both cortical and subcortical structures, and EEG 

can gather information from electrodes placed all over the scalp, with a high temporal 

resolution. fNIRS causes less environmental stress than fMRI since it has no head 

constraints (Tanida, et al., 2007). It is also easy to setup, taking less than a minute to 

install the sensor (Figure 2-4) under a sports headband, which is an advantage over EEG. 

 

Figure 2-4. A linear array probe. 
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fNIRS sensors can take many forms, the only constraint being the presence of light 

sources and detectors. With multiplexed light sources, the same detector can be used 

with many sources, and many detectors can pick up the light from a single source in 

specific arrangements. Geometrical arrangements of light detectors and sources in an 

fNIRS device vary from linear arrays (Figure 2-5A) to circle configurations (Figure 2-5B), 

with varying degree of complexity depending on the number of light sources and 

detectors. Linear arrays allow the measure of different depth of the same brain area: 

sources placed further from the detector measure deeper tissues. Circle configurations 

are designed to probe a larger cortex area, at a fixed cortex depth. 

 

Figure 2-5. Possible geographical arrangements of fNIRS sensors.  

White squares indicate sources, and black circles illustrate detectors. 

While there are many brain imaging techniques, each with advantages and 

disadvantages, we believe fNIRS to be a suitable brain sensing technology for HCI 

research because it is safe, non-invasive, easy to use, and relatively impervious to user 

movement, as compared to other brain techniques (see Lee and Tan (2006), Scerbo et 

al. (2001) and Coffey et al. (2010) for brain sensing and imaging techniques 

comparisons). Chapter 3 explores potential sources of noise and artifacts and 

investigates in detail the influence of typing, clicking, head and facial movements on 

brain signals. fNIRS also removes many of the physical restrictions on the subject, in 

B) A) 
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theory making naturalistic human-computer interaction possible. The technology is even 

portable (Hoshi, 2009).  

2.2.3 Combining Technologies 

There are few technological limitations to combining multiple brain sensing systems, 

such as EEG and fNIRS (Hirshfield, et al., 2009a; Kennan, et al., 2002; Merzagora, et al., 

2009). The two types of sensors can be placed around the scalp in alternating patterns, 

with minimal interference, provided the EEG electrode gel is kept away from the fNIRS 

sensors. In fact, the combination of both signals can provide complimentary information 

about the user, and machine learning analysis will be particularly helpful in combining 

the rather disparate data. The use of two measurements can counter balance their 

disadvantages (Zander, et al., 2010), for instance in terms of time and spatial 

resolutions.  

Brain sensing can also be combined with other modalities. Noel et al. (2005) showed 

that the combination of EEG with physiological signals such as cardiac, ocular, and 

respiration measures accurately classifies workload levels on multiple subjects and days, 

while classification was previously unsuccessful by looking at datasets separately. In 

turn, Vilimek and Zander (2009) combined EEG and eye gaze to build a mouse click 

system that used the eye movements to determine the object to be selected, and the 

brain signal to select it. Their system produced fewer errors than with eye gaze only, 

using each tool for their main benefit.  
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2.3 fNIRS Data Processing and Analysis Methods 

fNIRS is still a new methodology, and as such it lacks well-established preprocessing and 

analysis methods (Butti, et al., 2007; Hoshi, 2009; Kondo, Dan, & Shimada, 2006). For 

example, Matthews et al. (2008) identified more than a dozen different signal 

processing techniques used in fNIRS to remove noises and motion artifacts. 

Physiological noise present in fNIRS signals includes cardiac signals (0.5-2 Hz), 

respiration (0.2-0.4 Hz) and Mayer wave (spontaneous low frequency oscillations 

without clear origins; 0.1 Hz) (Coyle, Ward, & Markham, 2004), and we can find many 

signal processing techniques to remove each of the source of noise (Coyle, et al., 2004; 

Izzetoglu, et al., 2005a; Matthews, et al., 2008; Robertson, Douglas, & Meintjes, 2010). 

To analyze the data, each researcher is currently left to his or her better judgment to 

find a method that works best. Some researchers choose to do a visual inspection of the 

data to determine patterns (Nishimura, et al., 2007), while most use some sort of 

statistical analysis of the data, with no real consensus on how to perform this analysis.  

2.3.1 Statistical Analysis 

fNIRS data are multivariate time series, as we have many measurements at once. We 

identify two main types of statistical analysis approaches. Analyses of variance can be 

performed by comparing the different curves together (to identify whether different 

curves are activated differently), or by comparing each time point to the first point 

(baseline) of the curve (to identify whether the time series contains areas of activation). 

The analyses are also identified as single trial analysis or folding average, respectively. 

The second comparison, however, offers little generalizability over multiple 
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measurements and subjects. Data reduction done with fNIRS for statistical analysis also 

varies: reducing the number of time points, or the number of sources of data (Figure 

2-6). Reducing the number of points sometimes result in a single averaged point per 

curve. 

 

Figure 2-6. Illustration of the fNIRS data reduction in statistical analyses. 

Practically, these approaches result in different analysis techniques. Many researchers 

perform paired t-test on averaged concentration change for each trial (Matsuda & 

Hiraki, 2005; Sakatani, et al., 2006), or analyses of variance on hemoglobin 

concentration (Izzetoglu, et al., 2004b; Matsui, et al., 2007), sometimes averaging 

channels together to obtain data about a certain region of the brain (Kono, et al., 2007). 

Others average all the trials at each time point and performs t-test to compare each 

point with a baseline point (Hirshfield, et al., 2009b; Nagamitsu, et al., 2006), or use a 
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regressor model for analysis (Sitaram, et al., 2007). Additional analyses include using a 

generalized linear model (Butti, et al., 2007; Schroeter, Zysset, & von Cramon, 2004), an 

analysis of variance to compare multiple sessions (Kono, et al., 2007), or using the 

Pearson product-moment correlation coefficient between behavioral and fNIRS data 

(Izzetoglu, et al., 2007; Kono, et al., 2007).  

2.3.2 Machine Learning Classification 

Additionally, a small number of researchers perform machine learning classification and 

clustering on fNIRS data. Machine learning algorithms can provide more powerful data 

classification than traditional statistical techniques for real time analysis. Classification 

algorithms can perform well in the presence of noise and suboptimal data, which is 

common in measurements of brain activity. They can be applied offline as well as in real 

time, which is an important quality for adaptive brain computer interfaces.  

Machine learning allows us to train classifiers without having domain expertise of the 

fNIRS output. For HCI researchers, the primary interest is in accurately detecting user 

state, rather than understanding why or how the fNIRS device produces its output. This 

added level of abstraction gives us flexibility to classify a myriad of user states. As fNIRS 

is an emerging technology, it is not clear how reliable the data will be, and whether the 

noise in the data will be prohibitive. We hope to show that fNIRS data analysis using 

machine learning can achieve high levels of accuracy in classifying the task a user is 

performing, making it a valuable, non-invasive tool for human-computer interaction 

research.  
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We find time series research in many domains such as meteorology, astrophysics, 

geology, multimedia, and economics (Sakurai, Yoshikawa, & Faloutsos, 2005), and there 

is a long history of time series analysis, including Fourier transforms, Hidden Markov 

Models, recurrent neural networks, and dynamic time warping (Berndt & Clifford, 1996). 

However, the EEG and fNIRS data analysis goals differ from those of other domains, as 

researchers are mostly interested in classifying current datasets, instead of making a 

future prediction, as is customary in fields like market economy.  

In addition, the analysis of biological data collected using non-invasive methods such as 

EEG and fNIRS does present unique challenges. The complexity of the fNIRS dataset 

makes it a difficult problem to solve. The data is multivariate (many measures at once), 

and time series. This high dimensional data also usually suffers from a limited amount of 

examples. Depending on the classification technique, the cross validation may need to 

be performed in blocks, though this is not a problem unique to fNIRS, as pointed out by 

Lee and Tan (2006). Finally, the difficulty of cross-subject data classification for this type 

of data is an identified problem (Noel, et al., 2005). 

Because fNIRS is a relatively new technique, machine learning algorithms have not been 

widely applied to data collected with this tool. There are many approaches that can be 

taken to classify time series data, such as comparing the distance from a sequence to 

another using Euclidian distance or dynamic time warping. One can observe the data in 

either the time or frequency domain, with a Fourier transform. fNIRS classification 

techniques explored include support vector machines and hidden Markov models to 

separate between left and right motor imagery (Sitaram, et al., 2007). Abdelnour and 

Huppert (2009) used an adaptive version of the general linear model that works in real 
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time. Ayaz et al. (2009) compares classification with k-nearest-neighbor versus naïve 

Bayes to classify data from a second day of measurement using data from the first day, 

both for rest tasks and activation task separately. k-nearest-neighbor performed better 

at classifying rest tasks than activation tasks, but naive Bayes performed equally well 

(over 95% accuracy) for both classifications. 

Some researchers have also attempted clustering. If the goal is to evaluate interface 

using brain signal, the use of clustering will provide a relevant tool to compare the 

different signals to see similarities (Hirshfield, et al., 2009b). Son et al. (2005) used K-

means to cluster fNIRS data with moderate success. Their dataset was small and they 

analyzed each sensor’s data separately, lacking generalizability. Hirshfield et al. (2009b) 

did clustering by preselecting the most relevant channels, and performed hierarchical 

clustering with unweighted average Euclidian distance similarity matrix. Their results 

compared which tasks were more similar to provide insights as to the mental 

similarities.  

Research with other biological and physiological measures has achieved successful 

classification with machine learning. Wilson and Fisher (1995) achieved 86% correct 

classification of 14 tasks using EEG signals using principle components analysis with 

stepwise discriminant analysis. Anderson and Sijercic (1996) used two and three layer 

feed forward neural networks to classify five cognitive tasks from data collected using a 

six-channel EEG. They achieved 38%-71% accuracy, depending on the subject. Millan 

(2003) also used neural networks with success. Lee and Tan (2006) converted the data 

into a time independent dataset and achieves classification of three mental tasks at 84% 

accuracy, using a Bayesian network. Using a similar method, Grimes et al. (2008) 
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explored different feature generation for classification. Their results indicate that a 

larger window size produces higher accuracies, more training data leads to better 

results, although not by much, and more than two EEG channels produces similar 

results. Other methods include using Bayesian classifiers (Keirn & Aunon, 1990), artificial 

neural networks (Wilson & Russell, 2003) and clustering algorithms (Anderson & Sijercic, 

1996). 

2.4 Real Time fNIRS Brain Computer Interfaces 

Many BCI systems and tools operate in real time, processing EEG data streams, and 

controlling interfaces (Krepki, et al., 2007; Pfurtscheller, et al., 2007; Schalk, et al., 2004; 

Wolpaw, et al., 2002). Delorme (2010) reviews more than a half-dozen existing BCI tools, 

and Schlögl (2007a) lists many open source packages. There are, however, very few 

fNIRS BCI real time systems available. 

A common experimental protocol is to generate two brain states (either two types of 

activation, or one activation state and a rest state), and attempt to differentiate the 

two. Translated to a real time system, this protocol usually leads to binary decisions, 

where the user is asked to perform an activating task to indicate intent, and to rest 

otherwise.  

The most common outcomes of such binary decisions are direct control of interfaces, 

active BCIs. For instance, Coyle et al. (2007) presented a real time fNIRS system that 

allowed participants to select a colored box by performing a mental rotation when the 

preferred target was highlighted. We found this simple interface to be one on the first 

example demonstrating the ability for the fNIRS signal to be analysed in real time. Their 
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state distinction is done using a threshold, which requires domain expertise and the 

selected settings may not be easily reused from one participant to another.  

In a more complex (but preliminary) interface by Mappus et al. (2009), users drew a line 

on a two dimensional plane using activated periods to do straight lines, and rest periods 

to curve the line. In both studies, participants were instructed what brain task to 

perform in order to use the system. Another fNIRS system, proposed by Nishimura et al. 

(2010), uses the hemoglobin activation value to control the movements of a swimming 

dolphin (up or down). The continuous feedback is engaging to participants as they try to 

move the dolphin in order to eat fish placed at different heights.  

Using a different paradigm than the activation-rest one, Luu and Chau (2009) compared 

two different activated brain signals to indicate drink preference. To my knowledge, this 

is the first example of a real time system that distinguished two activation states 

without specific instructions. Their analysis simply compared the signals and identified 

the signal with maximal amplitude as the drink of choice. 

While the studies mentioned are using direct brain input, we believe fNIRS to be better 

suited for passive BCIs. The relatively slow signal response of fNIRS doesn’t lend itself to 

be the best technology for rapid communication, direct input, especially when designed 

for the general public. In addition, researchers use basic techniques such as selecting 

the signal with the highest amplitude to make the binary decisions. We believe there are 

more powerful and better suited techniques. 
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2.5 Measuring the Brain with fNIRS 

Much fNIRS research until now focused on iteratively designing the tool and running 

feasibility studies to show that it measures brain activity with accuracy levels 

comparable to more well-established brain imaging techniques (Sassaroli, et al., 2006). 

As compared to other brain imaging devices which have been around for a long time, 

the fNIRS device is still in relative infancy (Lee & Tan, 2006). The extensive applications 

conducted with other brain imaging techniques such as EEG, have yet to be 

implemented. None the less, current research shows optimism to reach this stage in the 

near future. 

Brain activity measurements with fNIRS are directly linked to the sensor’s location. 

There are many possible placements of probes, allowing the study of multiple brain 

regions. The basic technology is common to all systems, and the measured signal 

depends on the location of the probe and the amount of light received. 

The most common placements are on the frontal lobe, including the motor cortex, and 

the prefrontal cortex (PFC), although other regions have also been explored such as the 

visual cortex (Herrmann, et al., 2008a) (Figure 2-7). The frontal lobe plays a part in 

memory, problem solving, judgment, impulse control, language, motor function, sexual 

behavior, socialization and spontaneity. It also assists in planning, coordinating, 

controlling and executing behavior.  

Sensing the motor cortex allows the detection of both motor tasks, such as moving a 

limb (Sitaram, et al., 2007), or motor imagery, where the movement is thought but not 

executed (Coyle, et al., 2003; Sitaram, et al., 2007). Motor imagery produces a smaller 



Chapter 2: Background and Related Work  

 
 33 

signal than motor tasks, but has a greater potential with the disabled, paralyzed 

population of users.  

 

Figure 2-7. Cerebral lobes and the anterior prefrontal cortex. 

While Matthews et al. (2008), note that the “motor cortex activation is the most 

common mental strategy for fNIRS-BCI control” researchers have shown that by placing 

the light sources and detectors on a subject’s forehead, fNIRS provides an accurate 

measure of activity within the prefrontal lobe of the brain (Quaresima, et al., 2005). We 

believe these prefrontal cortex signals to be of great potential to HCI, more so than 

measurements of the motor and visual cortex. If the participant is using a computer, the 

system is aware of the core of their movements (though keyboard and mouse input), as 

well as what is in their visual field, reducing the usefulness of the motor and visual 

cortex measurements. 
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The prefrontal cortex has been the source of a large number of studies. Emotions were 

investigated through alertness (Herrmann, et al., 2008b), and general arousal and 

valence levels generated by showing pictures (Leon-Carrion, et al., 2006; Yang, et al., 

2007). Stress has also been shown to increase oxyhemoglobin (Tanida, et al., 2007), as 

well as anxiety, where anticipation of a shock produces high activation (Morinaga, et al., 

2007). Both Bunce et al. (2005) and Tian et al. (2009) successfully investigated the 

detection of intentional deception in adults. Mappus et al. (2009) studied language 

production in Broca’s area. Kobuta et al. (2006) researched the prediction of false 

memory, which occurs when subject recognize a previously unstudied word 

semantically related to a group of words memorized.  

Finally, a large number of articles study the more general concept of mental workload 

through tasks like a warship control task (in a command and control environment), 

navigation into hyperspace, auditory ordering of letters, preference (Hirshfield, et al., 

2009b; Izzetoglu, et al., 2004b; Izzetoglu, et al., 2005b; Luu & Chau, 2009; Son, et al., 

2005), although some research have studied specific components of it. Hirshfield et al. 

(2009b) attempted to separate syntax and semantics of interfaces and succeeded in 

identifying the syntactic elements.  

Within the prefrontal cortex, we chose to study specifically the anterior prefrontal 

cortex (aPFC), also called the frontal poles, an active region that deals with high-level 

processing, such as working memory, planning, problem solving, inhibition, memory 

retrieval and attention (Burgess, Quayle, & Frith, 2001; Horn, et al., 2003; Koechlin, et 

al., 2000; Ramnani & Owen, 2004; Simons, et al., 2005). The aPFC region is located 

under the forehead (Figure 2-7), and is identified by the Brodmann area 10p. It was 
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selected because of location specific neural correlates, and because of easy access. As 

the forehead is hairless, we can use simple, comfortable sensors, and we can access it 

on everyone. This is a major benefit of our setup.  

In most fNIRS studies, researchers identify the difference between two states only: 

activation and rest. Activation occurs when subjects perform a specific task for a few 

seconds up to a few minutes, such as mental rotations, arithmetic, or language 

production. Rest periods are produced by telling the user to think of nothing and stare 

into an empty screen. These studies are mostly designed to identify which types of 

activity are present in specific locations. They omit the exploration of finer details of 

levels of activation. 

2.6 Mental Workload 

The aPFC is rich is high level processes, and I concentrate my research on mental 

workload. Mental workload is a concept used by many, and yet researchers cannot all 

agree on a single definition of the term (Hacker, 2006). Nevertheless, they do agree that 

mental workload is multidimensional, influenced by a wide variety of elements, such as 

visual perception, selection, memory (storing and recall), comprehension and 

processing, data entry, reasoning, and motor movements (Iqbal, et al., 2005). Mental 

workload is composed of both conscious and unconscious efforts to perform a task 

(Alty, 2003). It is well understood that a reliable measure of user workload could have a 

positive impact in many real life interactions (Guhe, et al., 2005; Iqbal, Zheng, & Bailey, 

2004; John, et al., 2004).  
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Performance as a function of mental workload can be illustrated with a Gaussian curve 

(Figure 2-8), where low and high mental workload are associated with a reduced 

performance. There is an optimal mental workload level associated with the optimal 

performance. Low mental workload, also called underload, is often observed by 

operators monitoring automated systems for long period with little intervention 

(Hancock & Chignell, 1988). Overload (high mental workload) may happen when novices 

must perform a highly difficult task, in a small amount of time, for example. For a 

common task, associated mental workload depends on the experience of the operator.  

 

Figure 2-8. Performance according to Mental Workload. 

Some researchers have associated mental workload with effort. Hancock and Chignell 

(1988) evaluate mental workload with the formula:
11  setW , where e is the effort 

required for the task, t the time available to perform it, and s the skill level (low for 

novices, high for experts). In this case, mental workload is inversely proportional to the 
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effort. However, evaluating effort is just as difficult as evaluating workload, leaving this 

formula unused. 

Mental workload also usually varies over the course of a task. Complex and/or long 

tasks are composed of subtasks, each of which results in different levels of mental 

workload (Iqbal, et al., 2005). Further, there is also a small lag between the task demand 

and the mental workload level (Hancock & Chignell, 1988). Figure 2-9 illustrates this 

chronological fluctuation. 

 

Figure 2-9. Change in level of mental workload as function of chronological 

progression. The level of workload displays a small lag following the task demand.  

Black areas represent regions of unacceptable load (Hancock & Chignell, 1988). 

2.6.1 Assessing Mental Workload 

Performance, physiological and psychophysiological measurement, subjective 

assessment and secondary tasks performance can be used to measure mental workload, 

all presenting advantages and drawbacks. Reliable measures of user workload can have 

a positive impact on performance (Guhe, et al., 2005; Iqbal, et al., 2004). 
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Numerous physiological measures have been proven to reflect the current mental 

workload of the user, such as change in heart, respiration, blink rate and pupillary 

response (Chenier & Sawan, 2007; Iqbal, et al., 2004), change in body temperature, 

galvanic skin response (John, et al., 2004; Tao, et al., 2005), facial features (Guhe, et al., 

2005), to name a few. While those measures are objective and obtained in real time, 

their main drawback is that they are external manifestations of the cognitive state.  

Measuring user workload with psychophysical measures such as electroencephalogram 

(Gevins & Smith, 2003; Grimes, et al., 2008; Kok, 1997; Lee & Tan, 2006), functional 

near-infrared spectroscopy (Izzetoglu, et al., 2003; John, et al., 2004; Son, et al., 2005), 

and facial electromyography (Fuller, et al., 1995) have also been a topic of much 

research recently. These measures provide an objective assessment of mental and 

physical responses to a particular task. They also allow real time measurements, used to 

create real time adaptive systems. However, these physiological and 

psychophysiological measures rely on equipment that could be difficult to use properly 

(hard to place correctly on the body, for example), and they impose physical constraints 

on the user (Wickens & Hollands, 1999). Within this group of measures, we believe 

fNIRS to have the advantages associated with a direct, objective, and potentially real 

time load measures, while having fewer constraints, and being easier to setup than 

most. 

Subjective assessment tools provide simple methods to evaluate the load imposed on 

the user for a particular system. One of the first measures of mental workload because 

they do not require any special equipment, these measures do not influence the task 
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itself since they are performed after the fact. However, they are self-observation, 

subjective by nature, and the data cannot be collected in real time.  

There are many subjective tools available on the market. Three common 

multidimensional assessments technique are the NASA Task Load Index (NASA-TLX), the 

subjective workload assessment technique (SWAT) and the Workload Profile (WP). The 

NASA-TLX (Hart & Staveland, 1988) measures workload on six different dimensions 

(mental demands, physical demands, temporal demands, own performance, effort, and 

frustration), and adds weights to balance each value per task, to calculate the amount 

and type of mental workload a user experiences during task performance. SWAT (Rubio, 

et al., 2004) uses the conjoint measurement technique to combine ratings on three 

different dimensions of workload (time load, mental effort load, and stress load). WP 

(Tsang & Velazquez, 1996) compares the proportion of attention resources of users of 

four workload dimensions (stage of processing, code of processing, input, and output) 

measured after the completion of all experiments. Rubio et al. (2004) compared these 

three methods and recommended using the Workload Profile when the goal is to 

compare two or more tasks with different levels of difficulty. They advise NASA-TLX for 

predicting the performance of an individual at a task. Finally, when an analysis of 

cognitive demand is required, WP is the better choice, followed by SWAT.  

In an attempt to combine the real time nature of physical measurement with the self-

examinatory quality of subjective assessment, Pickup et al. (2005) developed the 

Integrated Workload Scale (IWS), a one-dimension eleven point scale, that prompts 

users to categorize their current mental workload every couple of minutes. The authors 

showed a correlation between the IWS measure and the task demand, showing that 
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mental workload could be measured by IWS. This measure shows potential for 

combining multiple types of assessment to produce an accurate method, but it 

interrupts the user constantly.  

Finally, secondary tasks performance can provide a reliable measure of mental workload 

(Hockey, et al., 2003). Consider the situation where a user is given instructions to 

perform a first task correctly, in priority, and to perform a second task when possible. 

The performance of the second task will be an indicator of the effort put into 

maintaining his performance at the first task. Just as physiological assessment, 

secondary task assessment provides a real time measure of the mental workload of the 

user. However, performing two tasks at the same time is harder than one, leading to 

possible secondary task contamination, where a second task actually influences the 

performance of the first task. Koechlin et al. (2000) found anterior prefrontal cortex 

activation for dual tasks, especially during branching, where subjects remember a 

primary goal while processing secondary tasks. 

2.6.2 Game Play 

The mental workload framework encompasses many types of tasks, and I narrow my 

focus on game play. These multidimensional tasks include time constraints, sub goals, 

planning, visual perception and motor movements and they should lend themselves 

well to brain sensing. Indeed, game play has been measured using psychophysiological 

signals. For instance, Chen et al. (2008) used two physiological measures (heart rate 

variability and electromyogram) to measure the interruptibility of subjects in different 

tasks, including a game, and found a high correlation between those measures and the 
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self-report of interruptibility. Chanel et al. (2008) successfully differentiated between 

three emotional states (boredom, engagement and anxiety) using galvanic skin 

response, blood pressure and respiration, and suggest game adaptation based on those 

states.  

Several fNIRS studies evaluating gaming environments reported a significant variation in 

hemoglobin concentration in the prefrontal cortex in comparison to resting in many 

studies. Using fNIRS, Nagamitsu (2006) observed a significant increase in the 

hemoglobin concentration of the prefrontal cortex in adult subjects while playing an 

arcade game (Donkey Kong). Matsuda and Hiraki (2005, 2006) reported a decrease in 

oxygenated hemoglobin in the prefrontal cortex when playing video games, both in 

adult and children. Their subjects played a shooting game, a rhythm action game, a 

block puzzle and a dice puzzle. Hattahara et al. (2008) investigated the influence of 

expertise on fNIRS measured brain activity. They report that novices produce strong 

deactivations in the prefrontal cortex, but that the response is inversed with experts. 

However, this result was obtained with a very limited number of subjects (three subjects 

for each of three levels), and the generalizability of their work is unclear. Their 

subsequent experiment comparing one subject’s brain during four measurement 

sessions also reaches inconclusive results.  

Studies with other brain measurements corroborate the activation of the prefrontal 

cortex when playing games. A functional magnetic resonance imagery (fMRI) study by 

Saito et al. (2007) demonstrated that they could differentiate between playing and not 

playing a computer game. Their study compared three video games: Space Invaders, 

Othello and Tetris. Others have measured the brain during game play using EEG and 
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demonstrated the ability to distinguish the user resting, exploring the game 

environment or playing the video game (Lee & Tan, 2006). Nijolt, Bos and Reuderink 

(2009) present a comprehensive survey of EEG games research, showing the success in 

measurements, and potential in use. 

2.7 Brain Sensing in Human-Computer Interaction 

To conclude this related work chapter, it is imperative to discuss brain sensing research 

within human computer interaction. Gevins and Smith (2003) identified four qualities of 

cognitive load monitoring methods necessary for HCI settings: the tools should be 

“robust enough to be reliably measured under relatively unstructured task conditions, 

sensitive enough to consistently vary with some dimension of interest, unobtrusive 

enough to not interfere with operator performance and inexpensive enough to 

eventually be deployable outside of specialized laboratory environment."  

Researchers have taken two main paths with brain sensing: either to evaluate 

interfaces, or to adapt them. The core of the work has been done in interface 

adaptation (or towards interface adaptation), although we believe that usability and 

user experience evaluation is a growing field.  

2.7.1 Usability and User Experience Evaluation  

Using fNIRS brain sensing, Hirshfield et al. (2009b) explored separating syntactic and 

semantic components of a user interface following Shneiderman's theory (2005). 

Hypothesizing that the overall mental effort required performing a task using an 

interactive computer system is composed of a portion attributable to the difficulty of 
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the task itself plus a portion attributable to the difficulty of operating the user interface 

of the interactive tool, they successfully identified syntax components, which can be 

used to redesign interfaces.  

In an ACM CHI 2010 Conference workshop entitled BELIV'10: BEyond time and errors: 

novel evaLuation methods for Information Visualization (Bertini, Lam, & Perer, 2010), 

participants discussed the use of physiological measures to evaluate information 

visualization tools (Riche, 2010). We believe this is a trend that will extend to brain 

measures.  

2.7.2 Interface Adaptation 

The term adaptive interface relates to the automatic modification of the interface 

without explicit user directives to optimize a certain property (e.g. performance). 

According to Kuikkaniemi et al. (2010), “adaptation refers basically to systems which 

collect data on user or use-context and adapt their functionality according to some 

algorithm”. Wilson and Russell (2007) define a subset of adaption, called adaptive 

aiding, which is designed specifically to help the user accomplish their current task. The 

goal of adapting aiding is to “dynamically match the momentary cognitive capabilities of 

the operator with the demands of the task”. Allanson and Fairclough (2004) define the 

biocybernetic loop as interfaces that adapt based on the real-time measurement of 

psychophysiology. Coyle et al. (2009) proposes a limited theory on how to adapt 

interfaces, mainly to reduce the intrinsic cognitive load, which is how difficulty the new 

material or task is to learn. 
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Adaptation and adaptive aiding can be done using many measures. Specifically, adaptive 

aiding is a method of providing assistance to the operator by introducing automation 

only when required (Parasuraman, Mouloua, & Molloy, 1996). Parasuraman et al (1996) 

identified five strategies to implement aiding in systems, based on critical 

environmental events, operator workload, performance, or physiology, and 

performance modeling. They evaluated model-based and performance-based adapting, 

and showed that both provide significant improvement, with no basis for a choice of 

method. The adaptive method should be selected using other considerations, such as 

user preference or availability. Finally, hybrid methods that combine a subset of the 

other five techniques might also improve the performance. As adaptation may not 

always be the best strategy to help the user, Wilson and Russell (2007) explored 

different aiding techniques in a task with high cognitive load, one of which adapted the 

interface through brain and physiological sensing and one without aiding. They found an 

overall improvement in performance by aiding, and that adaptive aiding is better than 

random aiding.  

In a survey of the physiological computing, Allanson and Fairclough (2004) identified 

significant findings in biocybernetic adaptation. They found increased performance and 

engagement when the adaptation was sustained for long periods. They also observed 

that biocybernetic adaptation leads to “increased performance and reduced subjective 

mental workload”.  

We find many examples of interface adaptation in the literature, mainly done with EEG 

as it is the most commonly used technology. We identify a few successful examples of 

the diverse results achievable, both with active or passive BCIs. 
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Games are an application of choice for BCI researchers. In a state-of-the-art survey of 

BCI for games, Nijholt, Bos and Reuderink (2009) point out two axes of ways to use brain 

signals in games: one axis for the type of action, either game control or game 

adaptation; the second axis for the type of signal, either as internally or externally 

evoked signals, which is equivalent to active and passive signals as defined by Zander 

(2010). For instance, the user could do a mental calculation to externally evoke a game 

command, or the game could adapt to the user’s boredom (internally invoked).  

An fNIRS active BCI was created by Nishimura et al (2010). They proposed a dolphin 

trainer game that allows participants to control their brain signal to move a dolphin up 

and down to eat fish. The application can generate fish of different colors, each of which 

could be associated with unique tasks. For example, each fish could trigger the move of 

a different board game piece using a robotic arm.  

Recently, Yuksel et al. (2010) used the common P300 electroencephalography paradigm 

to select physical objects by placing them on an interactive multi-touch table. This 

extension of the P300 paradigm, typically used to spell words, fits well into an HCI 

context. 

Finally, by programming the behavior of a domestic robot using a commercially sold 

device that measures bioelectric signals (OCZ Peripherals, 2010), Saulnier, Sharlin and 

Greenberg (2009) have shown a simple example of an application of brain activity in day 

to day tasks. While they investigated the direct control of the speed of the robot with 

emotional states, they found behavioral control to be more reliable and appreciated by 

the participants. In this case, the robot would clean when the person was stressed, 
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while it behaved more like a pet, sitting near the user when s/he was relaxed. However, 

they found the commercial system very limited, and their experience showed only 

muscle tension was measured reliably. 

2.8 Summary 

The work presented in this thesis will address some of the lacunas of the discussed prior 

work with fNIRS. We identified and summarized the main issues with the related work.  

Most of the fNIRS studies compare an activated state with a rest state, which omits the 

exploration of levels of activation. The analysis of those studies is almost always 

performed offline, lacking any applicability for real time brain computer interfaces. The 

few fNIRS systems working in real time compare two states which lead to a binary 

decision. The response always controls the interface, and never leads to passive 

adaptation. Additionally, these real time studies omit discussing a meaningful 

integration of the inherent fNIRS signal delay into the interface response (which cannot 

be instantaneous). The techniques used to perform analyses require fNIRS domain 

expertise, which limits their use by non-experts, who might knowledgeable in other 

fields. Finally, we found not work that explicitly explores the impact of typical computer 

artifacts in data, although this work would have a high impact for any real-world 

applicability. 
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Chapter 3:  

Using fNIRS in Realistic HCI Settings1 

To be valuable in human computer interaction (HCI) settings, brain sensors should 

collect useful information while ideally allowing normal interaction with the computer, 

such as looking at the screen, or using the keyboard and the mouse. In addition, the 

measurements should have a quick set up time, be comfortable, place few (or no) 

postural constraints, and provide continuous, real time measures.  

Because most brain imaging and sensing devices were developed for clinical settings, 

they often have characteristics that make them less suitable for use in realistic HCI 

                                                           
1
 The work in this chapter was originally described in Solovey, et al. “Using fNIRS Brain Sensing in 

Realistic HCI Settings: Experiments and Guidelines” in the proceedings of the ACM UIST'09 
Symposium on User Interface Software and Technology, (2009) p.157-166. This was joint work 
with Erin Solovey.   
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settings. For example, although functional magnetic resonance imaging (fMRI) is 

effective for functional brain imaging, it is extremely susceptible to motion artifacts, and 

even slight movement (more than 3mm) will corrupt the image. In addition, the strong 

magnetic field prohibits all metal objects from the room, making computer usage 

impractical. Even the most common technology used for brain-computer interfaces, 

electroencephalography (EEG), poses some obstacles for HCI, as it is susceptible to 

artifacts from eye and facial movements, requires gel in the participant’s hair, takes 

some time to set up properly, and is subject to noise from nearby electronic devices.  

 

Figure 3-1. The use of fNIRS in typical computer settings. 

We believe that functional near-infrared spectroscopy (fNIRS) overcomes some of those 

constraints, and is well-suited for use in HCI, in part because the fundamental 

technology and the sensors do not constrain the user (Figure 3-1). fNIRS has been used 

in previous HCI studies because it has many characteristics that make it suitable for use 
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outside of clinical settings (Hirshfield, et al., 2009b; Mappus, et al., 2009). Benefits 

include ease of use, short setup time, and portability, making it a promising tool for HCI 

researchers.  

While we intend to use fNIRS to pick up psychophysiological data, we do not expect that 

the participant is physically constrained while using the computer. Yet, common 

behaviors such as head and eye movements are currently restricted during most fNIRS 

experiments. 

In most studies using any type of brain sensors, researchers control these problems by 

expending great effort to reduce the noise picked up by the sensors. Typically, 

participants are asked to remain still, avoid head and facial movement, and use 

restricted movement when interacting with the computer. In fMRI, subjects are even 

physically restrained by soft pads to prevent movements from disrupting the 

measurements (Raz, et al., 2005). The experiments are often held in soundproofed 

rooms to prevent environmental noise and electrical interference with the measures. In 

addition, many factors simply cannot be controlled, therefore researchers sometimes 

throw out data that may have been contaminated by environmental or behavioral noise, 

or they develop complex algorithms for removing the noise from the data. By doing this, 

the researchers hope to achieve higher quality brain sensor data, and therefore better 

estimates of cognitive state information. 

However, it is not clear that all of these factors contribute to problems in the case of 

fNIRS or that these restrictions improve the signal quality. Ideally, for HCI research, the 

fNIRS signals would be robust enough to be relatively unaffected by other non-mental 



Chapter 3: Using fNIRS in Realistic HCI Settings 
 

50 

activity occurring during the participant’s task performance. In fact, one of the main 

benefits of fNIRS is that the equipment imposes very few physical or behavioral 

restrictions on the participant (Hoshi, 2009). Thus, we would like to establish which 

physical behaviors inherent in computer usage interfere with accurate fNIRS sensing of 

cognitive state information, which can be corrected in data analysis, and which are 

acceptable.  

We felt it was important to identify and examine empirically considerations necessary 

for appropriate use of fNIRS in realistic HCI laboratory settings. Based on the results of 

our study, we will provide guidelines clarifying which behavioral conditions need to be 

controlled, avoided, or corrected when using fNIRS, and which factors are not 

problematic. With this information, researchers can better take advantage of fNIRS 

brain sensing technology.  

3.1 fNIRS Considerations 

With the introduction of any new technology, there are considerations that should be 

made for its proper use. For this reason, we use our previous experience with fNIRS as 

well as a literature review to recognize characteristics specific to fNIRS sensors that are 

relevant for HCI, and develop paradigms for using fNIRS properly in HCI research. In 

particular, we identify below potential sources of noise and artifacts in the fNIRS signal 

when used in typical HCI laboratory settings. 

As mentioned in Chapter 2, we have selected the brain region of the anterior prefrontal 

cortex as location of our measures. Hence, our considerations below are intended for 

researchers measuring the anterior prefrontal cortex, as the impact of the human 
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behavior and typical interactions will vary depending on the measured region of the 

brain. However, we expect our results to be valid for other experimental setups and 

contexts that use the prefrontal cortex area. 

3.1.1 Head Movement  

Several fNIRS researchers have brought attention to motion artifacts in fNIRS sensor 

data, particularly those from head movement (Devaraj, et al., 2004; Matthews, et al., 

2008). Matthews et al. (2008) explains that “motion can cause an increase in blood flow 

through the scalp, or, more rarely, an increase in blood pressure in the interrogated 

cerebral regions.” In addition, they point out that “orientation of the head can affect the 

signal due to gravity’s effect on the blood.” They note that these issues are significant if 

the head is not restricted, and even more so in an entirely mobile situation. However, 

other researchers indicate that fNIRS systems can “monitor brain activity of freely 

moving subjects outside of laboratories" and note that “measurements with less motion 

restriction in the daily-life environment open new dimensions in neuroimaging studies” 

(Hoshi, 2009). While fNIRS data may be affected by head movements, this should be 

contrasted with fMRI where movement over 3mm will blur the image. Because of the 

lack of consensus in the community, we chose to investigate the artifacts associated 

with head movements during typical computer usage to determine their effect on fNIRS 

sensor data in a typical HCI setting.  

3.1.2 Facial Movement 

fNIRS sensors are often placed on the forehead, and as a result, it is possible that facial 

movements could interfere with accurate measurements. Coyle, Ward, and Markham 
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(2004) point out that “slight movements of the optodes on the scalp can cause large 

changes in the optical signal, due to variations in optical path. It is therefore important 

to ensure robust coupling of optodes to the subject’s head”. These forehead 

movements could be caused by talking, smiling, frowning, or by emotional states such as 

surprise or anger, and many researchers have participants refrain from moving their 

face, including talking (Chenier & Sawan, 2007). However, as there is little empirical 

evidence of this phenomenon, we will examine it further in the experiment. We selected 

frowning for testing as it would have the largest effect on fNIRS data collected from the 

forehead. 

Eye movements and blinking are known to produce large artifacts in EEG data which 

leads to the rejection of trials including such an artifact (Izzetoglu, et al., 2004b). 

However, fNIRS is less sensitive to muscle tension and researchers have reported that 

no artifact is produced in nearby areas of the brain (Izzetoglu, et al., 2004b). It would 

also be unrealistic to prevent eye blinks and movement in HCI settings. Overall, we 

conclude eye artifacts and blinks should not be problematic for fNIRS, and we do not 

constrain participants in this study.  

3.1.3 Ambient Light 

Because fNIRS is an optical technique, light in the environment could contribute to noise 

in the data. Coyle, Ward, and Markham (2004) advise that stray light should be 

prevented from reaching the detector. Chenier and Sawan (2007) note that they use a 

black hat to cover the sensors, permitting the detector to only receive light from the 

fNIRS light sources.  
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While this is a concern for researchers currently using raw fNIRS sensors that are still 

under development, we feel that future fNIRS sensors will be embedded in a helmet or 

hat that properly isolates them from this source of noise. Therefore, in this chapter, we 

do not further examine how the introduction of light can affect fNIRS data. Instead we 

just caution that excess light should be kept to a minimum when using fNIRS, or the 

sensors should be properly covered to filter out the excess light. 

3.1.4 Ambient Noise 

During experiments and regular computer usage, one is subjected to different sounds in 

the environment. Many studies using brain sensors are conducted in sound-proof rooms 

to prevent these sounds from affecting the sensor data (Morioka, Yamada, & Komori, 

2008). However, this is not a realistic setting for most HCI research. Wakatsuki et al. 

(2009) demonstrated that environmental noise (construction sounds) did not have an 

influence on brain activation in the PFC unless they were at high volume. Therefore, we 

conducted this study in a setting similar to a normal office. It was mostly quiet, but the 

room was not soundproof, and there was occasional noise in the hallway, or from 

heating and air conditioning systems in the building.  

3.1.5 Respiration and Heartbeat 

The fNIRS signals picks up artifacts from respiration and heartbeat, by definition, as it 

measures blood flow and oxygenation (Coyle, et al., 2004; Matthews, et al., 2008). 

These systemic noise sources can be removed using known filtering techniques. For a 

discussion of the many filtering techniques, see Matthew et al. (2008) and Coyle et al. 

(2004).  
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3.1.6 Muscle Movement 

In clinical settings, it is reasonable to have participants perform purely cognitive tasks 

while collecting brain sensor data. This allows researchers to learn about brain function, 

without any interference from other factors such as muscle movement. However, to 

move this technology into HCI settings, this constraint would have to be relaxed, or 

methods for correcting the artifacts must be developed. Fink et al. (2007) discussed the 

difficulty of introducing tasks that have a physical component in most brain imaging 

devices, explaining that they may “cause artifact (e.g. muscle artifacts in EEG or 

activation artifacts due to task-related motor activity in fMRI) and consequently reduce 

the number of reliable (artifact-free) time segments that can be analyzed”. In addition, 

they note that the test environment of fMRI scanners also makes it difficult for any 

physical movement. Their solution was to have subjects think about their solutions 

during brain measurements, and to provide it after the measurement, which does not 

seem to be a likely solution for real world settings. 

One of the main benefits of fNIRS is that the setup does not physically constrain 

participants, allowing them to use external devices such as a keyboard or mouse. In 

addition, motion artifacts are expected to have less of an effect on the resulting brain 

sensor data. In this study, we examine physical motions that are common in HCI 

settings, typing and mouse clicking, to determine whether they are problematic when 

using fNIRS. 
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3.1.7 Slow Hemodynamic Response 

The slow hemodynamic changes measured by fNIRS occur in a time span of 6-8 seconds 

(Bunce, et al., 2006). This is important when designing interfaces based on fNIRS sensor 

data, as the interface would have to respond in this time scale. While the possibility of 

using event-related fNIRS has been explored (Herrmann, et al., 2008a), most studies 

take advantage of the slow response to measure short term cognitive state, instead of 

instantaneous ones.  

3.2 General Experimental Protocol 

Understanding how the potential noise sources described above affect fNIRS data 

during cognitive tasks is critical for proper use of fNIRS in HCI research. Thus, we devised 

a study to empirically test whether or not several common behavioral factors interfere 

with fNIRS measurements. Specifically, we selected typical human behaviors (head and 

facial movement) and computer interaction (keyboard and mouse usage), to determine 

whether each of them needs to be controlled, corrected, or avoided at all cost. This will 

help us determine whether standard interfaces can be used along with fNIRS in real 

brain-computer interfaces. 

We will call each of the examined physical actions artifacts, since they are not the 

targeted behavior we would like to detect with fNIRS. Using fNIRS, we measured brain 

activity as these artifacts were introduced while the participant was otherwise at rest, as 

well as while the participant was performing a cognitive task. We then compared these 

results to signals generated while the participant was completely at rest with no artifact, 

as well as to when the participant performed the cognitive task without the artifact. This 
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allowed us to determine whether the artifact had an influence on the signal generated 

in a rested state, as well as if it has an impact on the signal during activation. 

For each artifact, there were four conditions tested as described above: (A) a baseline 

with no cognitive task or artifact; (B) the cognitive task alone with no artifact; (C) the 

artifact alone with no cognitive task; and (D) the cognitive task along with an artifact 

(see Figure 3-2).  

 
At Rest 

Performing Cognitive 
Task 

 
2: Is there a difference 
between rest and 
cognitive task? 

No artifact 
present 

A.  No Artifact +  
 No Cognitive task 

B.  No Artifact + 
Cognitive Task 

 
2.1: When no artifact is 
present, is there a 
difference between rest 
and cognitive task? 

Artifact present 
C.  Artifact + 
  No Cognitive task 

D.  Artifact +  
 Cognitive Task 

 
2.2: When artifact is 
present, is there a 
difference between rest 
and cognitive task? 

   

  

1: Is there a 
difference 

between the 
presence and 

absence of 
the artifact? 

1.1: When the 
participant is at rest, 
is there a difference 

between the 
presence and 

absence of the 
artifact? 

1.2: When the 
participant performs 
the cognitive task, is 

there a difference 
between the presence 

and absence of the 
artifact? 

  

Figure 3-2. Letters A, B, C, and D show the conditions tested. The numbered questions 

indicate the comparisons between the conditions done in the analysis. 

Our goal in designing the protocol for each artifact was to reproduce realistic 

occurrences. As these artifacts do not necessarily happen often, we tried to balance 

conservatism (i.e. highly exaggerated artifact) with optimism (i.e. minute occurrence of 
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artifact), and chose a reasonable exaggeration of the artifact, maximizing the possibility 

of measuring the artifact if it can be measured, yet keeping the conditions somewhat 

realistic. 

3.2.1 Participants 

Ten participants took part in this study (mean age = 20.6, std = 2.59, 6 females). All were 

right-handed, with normal or corrected vision and no history of major head injury. They 

signed an informed consent approved by the Institutional Review Board of the 

university, and were compensated for their participation.  

All participants completed the five experiments described below in one sitting. They 

were given small breaks between each part, while wearing the probes. The study is 

within subject (each participant did all the experiments and conditions), and was 

counterbalanced to eliminate bias due the order of the experiments, and the conditions.  

3.2.2 fNIRS Apparatus 

We used a multichannel frequency domain OxiplexTS from ISS Inc. (Champaign, IL) for 

data acquisition (Figure 3-3). We used two probes on the forehead to measure the two 

hemispheres of the anterior prefrontal cortex (see Figure 3-4). The source-detector 

distances are 1.5, 2, 2.5, 3cm respectively. Each distance measures a different depth in 

the cortex. Each source emits two light wavelengths (690nm and 830nm) to pick up and 

differentiate between oxygenated hemoglobin ([HbO]) and deoxygenated hemoglobin 

([Hb]). The sampling rate was 6.25Hz. We use the term channel to define a source-

detector distance.  
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Figure 3-3. fNIRS Equipment. 

The two optical probes were placed on the middle of the forehead of participants on 

either side by use of an elastic headband to keep contact between the fibers and the 

scalp, as shown Figure 3-1. Note that the discomfort associated with wearing the probes 

across one’s forehead is minimal. Our probe is made of rubber, offering a comfortable 

sensor that isolates well the ambient light. 

 

Figure 3-4. A picture of the left probe. A probe includes a detector and light sources.  

Detector 
Sources 
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In previous studies using a similar, linearly arranged probe, researchers have chosen to 

use data from the furthest two channels only, in order to guarantee that the depth of 

the measurement reached the cortex. While it is likely that the shallower channels pick 

up systemic responses, or other noise sources, we decided to keep the data from all 

four source-detector distances measured as they might help separate out artifacts from 

task activation.  

In all the experiments, the participants were at a desk with only a small lamp (60 W) 

beside the desk turned on, and they were sitting at a distance of roughly 30” from a 19” 

flat monitor. The room was quiet, but was not soundproof and noise from the hallway 

outside the laboratory could be heard occasionally. The participants were instructed to 

keep their eyes fixated on one point on the screen, and to refrain from speaking, 

frowning or moving their limbs, unless instructed otherwise. 

3.2.3 Procedure and Design 

There were five different experiments conducted with each participant, all in one 

session. These corresponded with the four artifacts being studied (keyboard input, 

mouse input, head movement, and facial movement), plus the tasks without any artifact 

present. In between each experiment, the participant could take a break. Although the 

descriptions below are numbered as Experiments 0, 1, 2, 3, 4, the ordering of the 

experiments was counterbalanced between subjects. The main difference between the 

experiments was which additional physical artifact, if any, was introduced as the 

participant performed the two tasks. 
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3.2.4 Cognitive Task 

All five experiments used the same cognitive task. At the beginning of each trial, the 

participants were shown a 7-digit number on the screen for four seconds. The number 

then disappeared from the screen, but the participants were instructed to remember it 

in their head. After 15 seconds, the participants were asked to enter as much of the 

number as they could remember.  

The goal of the cognitive task used in these experiments was to provide a common task 

that participants would perform in all experiments, which yields a brain signal that could 

be detected with fNIRS. We choose a simple verbal working memory task because 

previous fNIRS studies have reported this type of task to produce a clear and consistent 

brain signal across participants (Ehlis, et al., 2008; Hirshfield, et al., 2009b). Many 

studies have successfully shown discrimination of two (or more) states, and we believe 

our results will generalize to those as well. 

3.3 Experiment 0: No artifacts 

This experiment consisted primarily of the cognitive task and rest periods. No additional 

artifact was introduced. This experiment was used to verify that we could distinguish 

the fNIRS data while the participant was at rest from the fNIRS data while the 

participant performed the cognitive task, when no artifact was present.  

First, the researcher read instructions to the participants, explaining the two tasks that 

they would perform in the experiment. Then the participants were presented with a 

practice trial which included an example of each task in that experiment, so the 
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participants would know what to expect. The participants then relaxed for one minute, 

so their brains could be measured at a normal, rested state. During this period, as well 

as all other rest periods, there was a black screen and participants were instructed to 

focus their eyes on the focal point and relax, clearing their heads of any thoughts. This 

was followed by ten trials. 

 

Figure 3-5. Experiment 0 (No artifacts).  

The white areas represent the two conditions analyzed. The answer period’s length 

was variable. 

A trial contained one 15s condition with the cognitive task, followed by a 15s rest period 

to allow the participant’s brain to return to a rested state. In addition, there was a 15s 

condition without the cognitive task in which the participant was essentially at rest (see 

Figure 3-5). These conditions were counterbalanced so that sometimes participants 

started with the cognitive task, and sometimes they started without the cognitive task.  

3.3.1 Preprocessing 

The preprocessing step transforms the raw data from the device into hemoglobin 

values, and smoothes the data to remove any high-frequency noise, as well as 

heartbeat. We chose to filter the data in these experiments because this is a standard 

step in fNIRS experiments, and the goal was to determine the influence of interaction 

techniques and artifacts on a typical fNIRS experiment. We applied a simple 
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preprocessing procedure. We used a non-recursive time-domain band-pass filter, 

keeping frequencies between 0.01-0.5 Hz (Folley & Park, 2005). The data was then 

transformed to obtain oxy- ([HbO]) and deoxy-hemoglobin ([Hb]) concentration values, 

using the modified Beer-Lambert law (Villringer & Chance, 1997). The law governs the 

influence of light absorption and scattering on optical measurements, and states that 

the change in light attenuation is proportional to the changes in the concentrations of 

oxy- and deoxy-hemoglobin. It should be noted that the combination of [HbO] and [Hb] 

gives a measure of total hemoglobin, which we will refer to as [HbT]. We averaged each 

trial in two seconds periods, to obtain seven averaged points we call Time Course. All 

ten trials from all subjects were included in the analysis. Figure 3-6 displays a typical 

example of the data for those two tasks. 

 

Figure 3-6. 7 data points time series example for typical rest and cognitive load tasks. 

3.3.2 Analysis 

In this experiment, we wanted to observe whether the cognitive task, on its own, 

yielded a brain signal that was distinguishable from the signal during a rested state. This 

result is fundamental to all the other experiments that include the cognitive task. If we 
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were not able to significantly distinguish the cognitive task from rest with no added 

artifacts, it would have been difficult to distinguish the two when additional noise was 

introduced into the data. 

To evaluate the presence of the cognitive task in the data, we choose to perform a 

statistical analysis through an analysis of variance. This type of ANOVA is designed to 

uncover the main and interaction effects of independent variables on a dependent 

variable. In our case, we have five independent variables: the condition performed (the 

cognitive task or the rest task), the hemisphere (left or right), the channel (labeled 1 to 

4, from the shortest source-detector distance to the furthest), and the time course (7 

sequential data points), as well as in some subset of the tests the type of hemoglobin 

(oxy- or deoxygenated). Our dependent variable is the amount of light measured. In lay 

terms, the analysis will observe whether any of those factors, or the combination of 

them, show significance, meaning that there is a difference in the data between the 

groups. For example, if the factor hemisphere is significant, this means the data shows a 

difference in values between the left and the right hemisphere. If the interaction of 

hemisphere and channel is significant, it would indicate that a combination of the two 

factors is significant, which could mean that the left channel 1 is different than the right 

channel 3. More combinations of elements can be significant in an interaction, two were 

given here as an example. 

First, this dataset and all reported datasets in this chapter were tested for conformity 

with the ANOVA assumption of normality by creating a normal probability plot, on 

which normal data produces a straight or nearly straight line, confirming that the 
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ANOVA is an appropriate test of significance. We omit the inter-subject variability 

testing as it is always positive in brain studies. 

We did a factorial repeated measures ANOVA on Cognitive Task (cognitive task or rest) x 

Hemisphere (left or right) x Channel (4) x Time Course (7). This identifies differences 

within each participant, and determines if those differences are significant across 

participants. This is Comparison 2.1 in Figure 3-2. We ran this analysis with [HbO], [Hb] 

and [HbT] data separately, as well as together by including Hemoglobin Type as a factor. 

While we did a factorial ANOVA, we are most interested in results that show significant 

interactions including the Cognitive Task factor, since these show significant differences 

between the signal during the cognitive task and the signal during rest. In this analysis, 

and all those following, we will only report significant results (p<0.05) that are pertinent 

to current HCI questions. The full statistical results can be found in Appendix A-1.  

3.3.3 Results 

From these three analyses, the only relevant significant factor found was with [Hb], 

Cognitive Task x Channel (F(3, 27)= 5.670, p= 0.031). This confirms that levels of [Hb] 

differ between trials where participants performed a cognitive task, and trials where 

they simply rested, and that this difference in [Hb] levels varied by channel. Therefore, 

one might hope that using measurement of different source-detector distances 

(channels) we can distinguish the cognitive task versus the rest tasks, thus feeding this 

decision to an HCI system. However, [HbO] and [HbT] did not find this interface 

significant, indicating that our cognitive task might show weak brain signal 
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differentiation in the region measured. We believe we can go forward with the rest of 

the analysis because of the positive result obtained with [Hb].  

3.4 Experiment 1: Keyboard Input 

The keyboard and mouse are the most common input devices for modern computers. 

We tested keyboard input in Experiment 1 and mouse input in Experiment 2. We 

hypothesized that keyboard inputs would not be a problem with fNIRS, since most brain 

activation for motor movement occurs in the motor cortex, an area not probed with our 

sensors. In addition, we did not believe that the physical act of typing would cause the 

sensors to move out of place or change the blood oxygenation characteristics in the PFC.  

We decided not to have participants type specific words because we were only 

interested in measuring the influence of the typing motions on the signal, instead of any 

brain activity associated with composing and typing text. They were instructed to 

randomly type on the keyboard, using both hands, at a pace resembling their regular 

typing pace, including space bars occasionally to simulate words.  

 

Figure 3-7. Experiment 1 (Keyboard Input). 

The white areas represent the two conditions analyzed in the experiment.  

The protocol was analogous to Experiment 0. The main difference is that in the task, the 

participant was also typing randomly as described above (see Figure 3-7). We do not 
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include a condition combining the cognitive task with no artifact as it has been 

successfully tested in Experiment 0. We reuse those results in the analysis of each 

artifact. 

3.4.1 Analysis 

To observe the influence of typing on the brain data, we examined the data in several 

different ways, corresponding with the numbers in Figure 3-2. Comparison 1 determines 

whether there is a difference between typing and not typing, regardless of whether 

there was cognitive task. Comparison 1.1 examines whether there is a difference in the 

fNIRS data between the presence and absence of the typing artifacts when the 

participant is at rest. Comparison 1.2 determines whether there is a difference between 

the presence and absence of the typing artifacts when the participant performs the 

cognitive task. Comparison 2 determines whether there is a difference between doing a 

cognitive task and no cognitive task, regardless of whether the participant was typing. 

Comparison 2.2 looks at whether there is a difference between rest and cognitive task 

when typing artifacts are present. Note that the comparison 2.1 was not examined in 

Experiments 1 to 4, as there are no artifacts present in this condition. We use the results 

of Experiment 0 for the comparison 2.1 in the analysis of each artifact. 

As in Experiment 0, we were most interested in results that showed significant 

interactions including the Cognitive Task factor, since these show significant differences 

between the signal during the cognitive task and the signal during rest. In addition, we 

were interested in significant interactions that included the artifact Typing, since these 



Chapter 3: Using fNIRS in Realistic HCI Settings 
 

67 

show significant differences between when the subject was typing and when the subject 

was not typing. 

Comparison 1, 1.1 and 1.2 used the interaction Typing (present or not) x Hemisphere 

(left or right) x Channel (4) x Time Course (7); Comparison 1.1 uses data from rest tasks; 

Comparison 1.2 uses data during cognitive tasks; while Comparison 1 uses both 

datasets. Comparisons 2 and 2.2 used the interaction Cognitive Task (cognitive task or 

rest) x Hemisphere (left or right) x Channel (4) x Time Course (7). Comparison 2.2 used 

data containing typing while Comparison 2 used data both with and without typing.  

Ideally, we would observe the absence of Typing as a factor in significant interactions for 

Comparisons 1, 1.1, and 1.2. For Comparisons 2 and 2.2, ideally we would find Cognitive 

Task as a factor in significant interactions, as this indicates the ability to distinguish the 

presence or absence of a cognitive task.  

For each comparison, we analyze the data for [Hb], [HbO] and [HbT] separately, as was 

done for Comparison 1 in Experiment 0. 

3.4.2 Results 

Task Detection—In Comparison 2, we found Cognitive Task x Hemisphere to be 

significant with [Hb] data (F(1, 9)= 5.358, p= 0.046. This indicates that when typing and 

not typing tasks are combined, we can determine whether the participant is performing 

a cognitive task or not using the right hemisphere. In Comparison 2.2, [Hb] yielded 

significance with Cognitive Task x Hemisphere (F(1, 9)= 5.319, p= 0.047). Comparison 2.2 

demonstrates that given typing, we can distinguish whether the participant is also 
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performing a cognitive task or not, specifically using the [Hb] data and looking at both 

hemispheres. 

Artifact Detection—Comparison 1 showed significance for Typing x Time Course 

with [HbO] (F(6, 54)= 3.762, p= 0.034), meaning that with cognitive task and rest tasks 

combined, we can distinguish typing using how they change over time (time course). We 

did not observe any significant interaction that included Typing in Comparison 1.1. We 

can conclude that at rest, there is no significant difference in the fNIRS signal between 

typing and not typing. We found that for Comparison 1.2, [Hb] data revealed 

significance with Typing x Hemisphere x Channel (F(3, 27)= 3.650, p= 0.042). We find 

Typing x Hemoglobin Type x Time Course to be significant (F(6, 54)= 6.190, p= 0.012). 

These results show that when the participant is performing a cognitive task, there is a 

difference whether the participant is also typing or not, as typing shows up in significant 

interactions.  

3.4.3 Discussion 

Comparison 1.1 confirmed that the sensors are not picking up a difference between the 

typing task and rest. However, in Comparison 1.2, we found that typing is influenced by 

the cognitive task. This is also true in general, as typing tasks are usually related to the 

current task. 

Overall, while typing can be picked up when there is a cognitive task present, we can still 

distinguish the cognitive task itself (Comparison 2.2 and 2). This confirms our hypothesis 

and validates that typing is an acceptable interaction when using fNIRS. From this, we 
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can also assume that simple key presses (e.g. using arrow keys) would also be 

acceptable with fNIRS since it is just a more limited movement than typing with both 

hands. 

3.5 Experiment 2: Mouse Input 

We designed a task that tests mouse movement and clicking. We hypothesized that 

small hand movement such as using the mouse would not interfere with fNIRS signal. 

The participant was instructed to move a cursor until it was in a yellow box on the 

screen, and click. The box would then disappear and another one would appear 

somewhere else. Participants were directed to move at a comfortable pace, not 

particularly fast or slow, and to repeat the action until the end of the condition. All 

participants used their right hand to control the mouse.  

 

Figure 3-8. Experiment 2 (Mouse Input).  

The procedure was identical to Experiment 1, except that the typing was replaced with 

mouse clicking (see Figure 3-8). We analyzed the data using the same comparisons as in 

Experiment 1, substituting mouse input for keyboard input.  

3.5.1 Results 

Task Detection—Comparison 2 yielded no significant interactions, indicating that 

we cannot distinguish between rest and cognitive task, when the data includes both 
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clicking and not clicking. In Comparison 2.2, we found both Cognitive Task x Hemisphere 

x Hemoglobin Type (F(1, 9)= 5.296, p= 0.047) and Cognitive Task x Hemisphere x 

Hemoglobin Type x Time Course (F(6, 54)= 4.537, p= 0.036) to be significant, indicating 

that even in data containing clicking, we can tell whether the participant is doing a 

cognitive task or resting. 

Artifact Detection—Comparison 1 yielded no significant interactions, indicating 

that we cannot observe differences between the presence and absence of clicking, 

when combining data from the cognitive task and rest. In Comparison 1.1, with [Hb], we 

observe an interaction of Clicking x Channel (F(3, 27)= 4.811, p= 0.044). This shows that 

we can tell whether someone is clicking when looking at specific channels, with the 

participant being at rest (Figure 3-9). 

 

Figure 3-9.  Mean Plots of Clicking x Channel for [Hb]. 

In Comparison 1.2, [HbO] data reveals significant interaction with Clicking x Hemisphere 

(F(1, 9)= 9.599, p= 0.013) and Clicking x Hemisphere x Time Course (F(6, 54)= 4.168, p= 

0.037). This indicates the ability to distinguish Clicking from no motor activity when the 
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participant is performing a cognitive task, although this effect differs across 

hemispheres. Finally, we observed significant interactions with Clicking x Hemisphere 

with [HbT] (F(1, 9)= 6.260, p= 0.034) and Clicking x Hemisphere x Hemoglobin Type (F(1, 

9)= 5.222, p= 0.048), which leads to the same conclusion as with [HbO] data only. 

Overall, we can tell whether someone is clicking depending on the brain hemisphere. 

Specifically, the left hemisphere is significant at distinguishing the two states, as 

illustrated in Figure 3-10. 

 

Figure 3-10. Mean plots for Clicking x Hemisphere for [HbO]. 

3.5.2 Discussion 

We found that clicking in this experiment might affect the fNIRS signal we are collecting, 

as Comparison 1.1 yielded interactions with the factor of clicking. This means that when 

the participant is at rest, there is a difference between the presence and absence of 

clicking. The difference in activation is not surprising as we did not have a “random 

clicking” task, but one where subject had to reach targets, which may have activated the 

anterior prefrontal cortex. However, because Comparison 2.2 still was able to 
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distinguish Cognitive Task, the cognitive task of remembering numbers may produce a 

different signal from clicking.  

While the hand movements of clicking and typing are not identical, we also believe the 

core difference between the clicking experiment and typing experiment is mainly due to 

the fact that clicking involved some brain activity and typing was random. This explains 

why did observe the presence of the artifact in rest-only conditions.  

Hence, results indicate that when we want to observe a cognitive task that contains 

clicking, we need to have the rest task contain clicking as well, as Comparison 2.2 found 

significant interactions, but Comparison 2 did not. In short, we need to know whether 

the user is clicking in order to distinguish the cognitive task. Luckily, this information is 

easily obtained by adding mouse events to our analysis. Overall, we believe that clicking 

is acceptable if the experiment is controlled, confirming in part our hypothesis.  

3.6 Experiment 3: Head Movement 

General head movements could affect the fNIRS signal, both because of possible probe 

movement on the skin, and possible change in blood flow due to the movement itself, 

as was noted earlier. We hypothesize that head movement could be a problem, as this 

seems to be reported by many researchers.  

Many types of head movements can occur, in all directions. We chose a condition that is 

representative of common movement while using the computer: we simulated looking 

down at the keyboard and up at the screen. These movements were done in an 
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intermittent manner, similar to head movements that may occur during normal 

computer usage, three times per 15s trial.  

The procedure was identical to Experiment 1 and 2, except that the typing or mouse 

clicking was replaced by the head movement (see Figure 3-11). We analyzed the data 

using the same comparisons as in Experiment 1 and 2, substituting head movement for 

keyboard or mouse input. 

 

Figure 3-11. Experiment 3 (Head Movement).  

3.6.1 Results 

Task Detection—We found no significant interactions for Comparison 2, meaning 

that it is not possible to separate the cognitive task from rest when including both data 

with head movements and data without head movements. In Comparison 2.2, we find 

that Cognitive Task x Hemoglobin Type x Channel x Time Course is significant (F(18, 

162)= 3.915, p= 0.048). With head movements, there is a difference between rest and 

the cognitive task. 

Artifact Detection—We found no significant interactions for Comparison 1, which 

indicates that it is not possible to distinguish between the presence and absence of head 

movements when the cognitive and rest data are combined. There were no significant 

results for Comparison 1.1, indicating that at rest, there is no significant difference in 
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the signal when the participant is moving his or her head or not. Comparison 1.2 

showed that with [Hb] data, we can distinguish Head Movement x Hemisphere x Channel 

(F(3, 27)= 5.363, p= 0.028), and we can significantly observe Head Movement x 

Hemoglobin Type x Time Course (F(6, 54)= 7.455, p= 0.002), meaning that during the 

cognitive task, we can tell between the participant moving their head or not. 

3.6.2 Discussion 

Similar to the clicking results, we found that we require the presence of head 

movements in both the rest and the cognitive task to distinguish it (Comparison 2.2), 

which leads us to suggest that head movement should be avoided. However, the 

movements in this experiment were more exaggerated and frequent than regular 

moving from keyboard to screen: for example, most subjects could not see the screen 

when looking at the keyboard. We suggest that participants minimize major head 

movements, and instead move their eyes towards the keyboard. We found our initial 

hypothesis correct, although we believe head movement may be minimized and 

corrected using filtering techniques. This conclusion is based on our experiment and on 

the work of Matthews et al. (2008).  

3.7 Experiment 4: Facial Movement 

Forehead facial movement moves the skin located under the probe, which may interfere 

with the light sent into the brain and its path. We hypothesize that forehead facial 

movement, e.g. frowning, will have an effect on the data.  
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In this experiment, participants were prompted to frown for two seconds, every five 

seconds. Specifically, we asked them to draw the brows together and wrinkle the 

forehead, as if they were worried, angry, or concentrating. 

The procedure was also identical to the other experiments, except that the artifact 

introduced was head movement (see Figure 3-12). We analyzed the data using the same 

comparisons as in the other experiments, substituting frowning motion for keyboard or 

mouse input, or head movement. 

 

Figure 3-12. Experiment 4 (Facial Movement).  

3.7.1 Results 

Task Detection—Comparison 2 found Cognitive Task x Channel x Time Course to be 

significant with [HbO] (F(18, 162)= 3.647, p= 0.043). Cognitive Task x Hemoglobin Type x 

Channel x Time Course was a significant interaction (F(18, 162)= 4.130, p= 0.042), both 

indicating that when frowning data is combined with not frowning, we can tell the 

cognitive task from rest at some but not all channels. Finally, Comparison 2.2 showed no 

significance for interactions that included Cognitive Task, indicating we cannot 

distinguish the cognitive task from rest when the subject is frowning.  

Artifact Detection—Comparison 1 showed significance with [HbO] for Frowning x 

Channel (F(3, 27)= 5.287, p= 0.035). We found significance with Frowning x Channel with 
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[HbT] (F(3, 27)= 5.343, p= 0.035), Frowning x Hemoglobin Type x Channel (F(3, 27)= 

4.451, p= 0.046). We see that regardless of whether at rest or doing cognitive task, we 

can distinguish whether frowning is occurring at some but not all channels (Figure 3-13), 

which is consistent with previous results.  

 

Figure 3-13. Mean Plots in Frowning x Channel for [HbO]. 

In Comparison 1.1, we found that [HbO] data showed Frowning x Channel to be 

significant (F(3, 27)= 5.194, p= 0.037), which we also noticed with both types of 

hemoglobin (F(3, 27)= 5.191, p= 0.037). When the participant was at rest, we can 

distinguish whether the participant is frowning or not at some but not all channels 

(Figure 3-14 plots a typical example of frowning). Comparison 1.2 found Frowning x 

Channel to be significant for [HbO] data (F(3, 27)= 4.862, p= 0.042) and with both types 

of hemoglobin (F(3, 27)= 4.978, p= 0.041). This indicates that there is a difference in 

[HbO] levels when participants were frowning or not frowning, and that this difference 

varied by channel, similarly to Comparison 1.1. 
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Figure 3-14. Typical example of frowning. 

3.7.2 Discussion 

We found that frowning data always can be distinguished from non-frowning. We also 

learned that if all the data includes frowns, then we cannot tell apart the cognitive task 

from the rest condition. However, we found that if we mix the data that contains 

frowning and no frowning, we can then discriminate the cognitive task, which shows 

interesting potential. Those results indicate clearly that frowning is a problematic 

artifact, and should be avoided as much as possible. This confirms our hypothesis.  

3.8 Performance Data 

In all five experiments, after each cognitive task, participants entered the 7-digit number 

that they had been remembering. To obtain the error rate of those answers, we 

compared each digit entered to the original digit, and found the number of digits 

correctly answered. Figure 3-15 shows the number of digits correctly answered 

averaged over all subjects, for each experiment. A repeated measures ANOVA 

examining the error rate across artifact types revealed no statistical differences 
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between them (F(4,36)= 0.637, p= 0.526). This result indicates that each experiment was 

of similar difficulty. 

 

Figure 3-15. Average number of correct digits, with standard deviation. 

3.9 Guidelines for fNIRS in HCI 

To take advantage of the benefits of fNIRS technology in HCI, researchers should be 

aware of several considerations, which were identified in this chapter, and summarized 

in Table 3-1. Our goal was to reveal whether or not several common behavioral factors 

interfere with fNIRS measurements. We empirically examined whether four physical 

behaviors inherent in computer usage interfere with accurate fNIRS sensing of cognitive 

state information. Overall, we found that given specific conditions, we can use typing 

and clicking in HCI experiments, and that we should avoid or control major head 

movements and frowns. Through our clicking experiment, we may extrapolate that non-

random artifact must be present in rest conditions as well as cognitive tasks, to 

maximize differentiation.  
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Table 3-1 . Summary of fNIRS considerations for HCI.  

Results Legend:  indicates acceptable, C indicates to correct,  

and  indicates to avoid or control. 

Considerations Result Reference 
Correction 
Methods 

Forehead movement  Exp 4  

Major head movement  Exp 3 Use chin rest 

Minor head movement C Exp 3,  
(Matthews, et al., 2008) 

Filter 

Respiration and 
Heartbeat 

C 
(Coyle, et al., 2004; 
Matthews, et al., 2008) 

Filter 

Mouse Clicking  Exp 2 
Collect signal 
during a clicking 
only task (rest task) 

Typing  Exp 1  

Ambient Light C (Chenier & Sawan, 2007) Wear isolating cap 

Hemodynamic 
Response 

 (Bunce, et al., 2006) 
Expect 6-8s 
response 

Ambient Noise C 
(Morioka, et al., 2008; 
Wakatsuki, et al., 2009) 

Minimize external 
noise 

Eye Movement and 
Blinking 

 (Izzetoglu, et al., 2004b)  

 

Other artifacts, such as minor head movements, heartbeat and respiration may be 

corrected using filtering. There are many types of filtering algorithms that can help 

reduce the amount of noise in data (Matthews, et al., 2008). Methods include adaptive 

finite impulse response (FIR) filtering, Weiner filtering (Devaraj, et al., 2004; Izzetoglu, et 
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al., 2005a), adaptive filtering (Devaraj, et al., 2004) and principal component analysis 

(Huppert & Boas, 2005; Matthews, et al., 2008; Sitaram, et al., 2007). Matthews et al. 

(2008) note that FIR can be used in real time if accelerometers are used simultaneously 

on the head to record head motion. The other methods are mainly offline procedures, 

making them less practical for real-time systems.  

The experimental protocol was designed to reproduce realistic occurrences of artifacts 

that might be present during typical computer usage in HCI laboratory settings. We 

purposefully exaggerated the artifacts to make sure they would be measured with 

fNIRS. So, we need to keep that in mind as the exaggerated artifacts are less likely to 

happen than in real experiments. Note that this was run in a typical, quiet office space, 

and not in a sound proof room like most brain sensing studies.  

In the future, it would be worthwhile to take these results a step further, to investigate 

even more realistic settings with multiple potentially interfering sources of noise. In 

addition, it would be useful to investigate using machine learning to identify the 

presence of artifacts in fNIRS data. With a database of undesirable artifacts in fNIRS 

signals, we could feed data from a new experiment to see whether any of the artifacts 

are found. This could provide a new and objective way to remove examples 

contaminated by such artifacts, instead of using visual observation. 

In conclusion, we have confirmed that many restrictions such as long setup time, highly 

restricted position, intolerance to movement, and other limitations, that are inherent to 

other brain sensing and imaging devices are not factors when using fNIRS. However, 

major head movements and frowning present an unacceptable source of noise in the 
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data. By using the guidelines described above, researchers can have access to the user’s 

cognitive state in realistic HCI laboratory conditions. This is important for adoption in 

HCI, and we recommend fNIRS as a valuable and effective input technology. 
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Chapter 4:  

Exploring Mental Workload and 

Interaction Style2 

We showed in Chapter 3 that fNIRS is a viable tool for HCI settings. The goal of this 

chapter is to explore its ability to measure a signal with strong potential for HCI. We are 

also interested in applying machine learning to automatically classify the brain states 

measured.  

                                                           
2
 The work in this chapter was partially described in Hirshfield, et al. “Human-Computer 

Interaction and Brain Measurement Using Functional Near-Infrared Spectroscopy” in the 
proceedings of the ACM UIST'07 Symposium on User Interface Software and Technology, (2007). 
This was joint work with Leanne Hirshfield and Erin Solovey.  
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Past research shows the potential for fNIRS to measure frontal lobe activity such as 

workload (Hirshfield, et al., 2009b; Izzetoglu, et al., 2004b; Izzetoglu, et al., 2005b; Luu & 

Chau, 2009; Son, et al., 2005). We present a study designed to distinguish several 

discrete levels of workload that users experience while completing a given set of tasks. 

We chose to evaluate several degrees of load as they are often associated with different 

tasks, and determining underload or overload situations can be beneficial in many real 

life interactions (Guhe, et al., 2005; Iqbal, et al., 2004; John, et al., 2004). With this new 

technique, we hope to provide objective measures of workload instead of the more 

classic subjective assessments. In the study, we use a standard task with varying 

workload levels that are cross-validated with an established measure of workload, the 

NASA-Task Load Index (Hart & Staveland, 1988). 

We use machine learning techniques to analyze fNIRS data to classify up to four levels of 

mental workload. The hypothesis driving the study is that useful features extracted from 

fNIRS output could be combined with machine learning models to accurately determine 

workload levels that the user was experiencing when completing a task in HCI. Machine 

learning classification techniques were selected as they add a level of abstraction to the 

dataset, permitting researchers without fNIRS domain expertise to extract meaningful 

user states from the brain data.   

Subjects completed thirty tasks where they viewed the top and all sides of a rotating 

three dimensional (3D) shape comprised of eight small cubes. The sides of the cubes 

within each shape were colored. In the experiment, cubes could be colored with two, 

three, or four colors. Possible colors were green, yellow, red and blue, all easily 
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distinguishable for a non-colorblind person. Figure 4-1 illustrates an example of a 

rotating shape, with four colors. 

 

Figure 4-1. A cube made up of eight smaller cubes. 

During each task, subjects counted the number of squares of each color displayed on 

the rotating shape in front of them. The shape rotated three times in increments of 90°, 

allowing the subject to view each side only once (a 270° rotation) but the top is visible at 

all times. During the rotation, each side of the cube was displayed for nine seconds. 

Subjects did not view the bottom of the shape, resulting in a total of twenty visible 

squares of different colors in each rotation. Rotation time and the layout of the shape 

were controlled during the experiment. 

To vary workload, we changed the number of colors present on the rotating shape. As 

the number of colors in the shape increased, it was necessary for subjects to keep more 

items in working memory to remember how many squares of each color had been 

viewed. There were four workload conditions. In the workload level 0 condition (WL0), 

subjects were asked to clear their minds and think of nothing. In the other three 

workload conditions subjects counted the colors on a rotating shape with two, three, 

and four colors. We refer to these conditions as WL2, WL3 and WL4. We did not use 

WL1 (one color) because of its triviality, as the answer would always be 20.  
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These conditions were chosen because of their potential relevance in the realm of HCI 

(Figure 4-2). Through pilot studies, we hypothesize that workload level 0 resembles a 

condition of user underload. Workload level 2 represents a situation when users were 

experiencing a normal level of workload (almost always producing the correct answer 

after the task completed). Workload level 4 corresponds to a condition of user overload 

(subjects usually lost track of their numerical counts and answered incorrectly on these 

tasks). WL3 conditions produced mixed results in our pilot studies, with subjects 

answering some WL3 tasks correctly and others incorrectly. 

 

Figure 4-2. Tasks in relation to workload. 

The main goal of this experiment was to decide whether fNIRS data is sufficient for 

determining the workload level of users as they perform tasks. To accomplish this, a 

graphical user interface (GUI) displayed the rotating shapes described above.  

A second goal was to determine whether there is a difference in mental workload when 

users complete varying spatial reasoning tasks: specifically tasks on a graphical display 
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versus using a physical object, such as a tangible user interface. Prior research on the 

comparisons between tangible interfaces and graphical user interfaces was the catalyst 

for inclusion of this condition (Ullmer, Ishii, & Jacob, 2005). One hypothesis is that 

perhaps the activation might not be located in the same part of the brain. To study this 

property, we developed physical shapes identical to the three colors graphical shapes 

(WL3). These physical shapes were rotated for the same amount of time as the graphical 

shapes on a circular turntable placed in front of subjects. We hypothesized that the WL3 

would require less workload with the physical shape than with the graphical shape 

because humans have some difficulty extracting 3D spatial information from a two-

dimensional screen.  

Therefore, there were five conditions tested in this experiment, which are outlined in 

Table 4-1. 

Table 4-1. Experimental conditions include workload levels and display type. 

Workload Level Number of colors Shape 

WL0 0 - 

WL2 2 GUI 

WL3 3 GUI 

WL3 physical 3 Physical 

WL4 4 GUI 

 

4.1 Procedure and Participants 

Our study was run on five subjects (three females), from 18 to 26 years of age. None of 

our subjects was colorblind, and four were right handed. We followed the block design 



Chapter 4: Exploring Mental Workload and Interaction Style 
 

87 

used in previous BCI experiments (Keirn & Aunon, 1990; Lee & Tan, 2006): we randomly 

placed each of the workload conditions into a set (five tasks per set) and each 

experiment consisted of six sets. Therefore, each subject saw each workload condition 

six times, one time in each set. The ordering of the conditions was randomized within 

each set, and per subject. 

At the completion of each task, the subject was prompted to state their answer (i.e. 

“nine blue and eleven yellow”). After stating an answer, the subject was instructed to 

rest for thirty seconds, allowing his or her brain to return to a baseline state. After 

completing the tasks, the subject was presented with an additional example of each 

workload level and asked to fill out a NASA-Task Load Index (TLX) (Hart & Staveland, 

1988). NASA-TLX provides a ground truth measurement, a benchmark for comparing 

and validating fNIRS results. It is a collection of questions relating to the task’s mental, 

physical, and temporal demands on the user, their performance, effort and frustration 

level when executing the task. We administered the NASA-TLX, commonly used today to 

subjectively measure user workload, to compare our results with an established 

measure of workload. This allowed us to validate our workload levels.  

4.2 Data Analysis 

We collected five datasets, composed of 30 tasks each (six tasks of each workload level), 

with 16 channel measures at each time point (2 light detectors picking up two types of 

hemoglobin from four light emitters = 2 detectors x 4 light sources x 2 types of 

hemoglobin).  
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4.2.1 Pre-Processing Steps 

We used a similar preprocessing technique to that of the previous chapter. We detail 

the differences in the processing. A Fourier transform was used to offset the trend in 

the fNIRS sensor readings throughout each task (Akgul, 2005). This trend is composed of 

very low frequency components (< 3mHz). Data in between tasks was not included in 

analysis, as participants talked while giving their answer to the task and rested for 30 

seconds to allow the blood flow in their brain to return to a baseline state.  

We normalized the data using z-normalization (Goldin & Kanellakis, 1995). A time 

sequence T can be normalized as ti’ = (ti – mean(T)) / std(T). This normalization was done 

on each channel, to reduce scaling between channels (Kahveci, Singh, & Gurel, 2002). 

We also cut off four seconds from the beginning of each task from the assumption that 

it does not contain brain activation information as it takes 4-5 seconds for the blood 

activation in the brain to be picked up by the fNIRS device (Bunce, et al., 2006).  

 

Figure 4-3. Example of fNIRS data for condition WL4. 

The black, ticker line indicates the mean of all six trials.  
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4.2.2 Machine Learning Analysis  

We used the sliding windows classification method to automatically produce task 

predictions. We selected this algorithm in part because it could be transformed for real 

time classification, a long term goal. The Sliding Windows method transforms the data 

into a time independent dataset, permitting the use of traditional machine learning 

algorithms (Dietterich, 2002). For each time point, we look at a window of size w 

surrounding that point, including several data points before and several data points 

after the time point (Figure 4-4). For a time point ti, a window of size 5 will contain {ti-2,  

ti-1, ti, ti+1, ti+2}. Windows are given the label of ti, even if the beginning or trailing points 

have another class label. 

  

Figure 4-4. The Sliding Windows approach.  

Each curve (one collected brain measure) is sliced into task-sized chunks, with each 

time point as a classification feature. 

We generated features for the average and slope of each window. Averaging over each 

window for each channel smoothed out some of the artifacts in the data from breathing 

Left 1 

Left 2 

Right 1 

Right 2 

Zoom 

window 

ti 
an example 

average and 
slope of each 
curve in window 
becomes an 
attribute  



Chapter 4: Exploring Mental Workload and Interaction Style 
 

90 

and heartbeat. We find the slope over each window to incorporate the increasing and 

decreasing nature over that window. We calculate the slope using the averaged values 

of the time points at the extremities of the window. The process is repeated for every 

time point, shifting by one time point, creating overlapping windows. Therefore, this 

resulted in 32 features for each instance (16 channels x 2 features per window).  

The Sliding Windows method produces classification examples for approximately every 

time point. This results in every condition having a large number of examples on which 

to learn and test.  

We selected a window size of 41 (approximately 6 seconds of data). We used the Weka 

machine learning toolkit (Hall, et al., 2009) to run experiments, with the multilayer 

perceptron as classification algorithm. Multilayer perception is a neural net with 

backpropagation.  

The sequential nature of brain sensing data is important: measurements occurring near 

each other in time are closely related, leading to non-independent readings. In our 

previous example, there is a correlation with a reading at time ti and the readings at 

time ti-1 and ti+1 because the reading corresponds with oxygenation in the blood which 

changes somewhat gradually. In this case, random sampling during cross validation gives 

misleading, high classification results since the training and test sets are not 

independent. For instance, random classification could put ti in the training set and ti+1 

in the testing set, which would make it ti+1 to be correctly classified. Therefore, we 

implemented a blocked cross-validation scheme to assess our accuracy (Lee & Tan, 

2006) based on our blocked experimental design. There were six sets (of 5 conditions) in 
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the experiment. We created a fold for each set, and we ran cross validation on each 

possible combination of training on five folds and testing on the unseen sixth fold of 

data. We averaged the results of these tests together to determine each classifier’s 

accuracy for the current subject. 

We were interested in determining whether we could distinguish different workload 

levels from the fNIRS data alone using machine learning. First, we calculated the 

presence of brain activity by comparing WL0 (no activity) with each workload level 

individually. For example, using data from WL0 and WL2, we ran classifiers to determine 

if we could distinguish the two classes from each other given training and testing data 

for only those two classes. We then calculated the accuracy of distinguishing each 

combination of graphical workload levels (three combinations of two levels; four 

combinations of three levels and one combination of all four levels). For example, we 

compared WL0, WL3 and WL4. Finally, we tested the classification of all five workload 

levels from each other, as well as comparing graphical and physical WL3. We ran a total 

of 14 tests for each dataset.  

4.3 NASA-TLX Results 

Using the NASA-TLX, we computed the results of each subject’s overall workload for 

each condition and averaged them together, displayed in Figure 4-5. Overall, we 

observe that an increased number of colors lead to a higher workload level. This 

supports the underlying premise of our study that workload increases as colors on the 

rotating cube increase. A one-way analysis of variance indicates statistical significance 

on the Task factor (p=0.0018). Post-hoc Tukey HSD tests, designed to determine which 
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groups differ from each other, revealed that only the TLX results between WL2 and WL4 

are statistically different (p<0.05).  This indicates that only those two states are 

perceived to be different.  

 

Figure 4-5. Total Workload calculated with NASA-TLX. 

4.4 Classification Results 

Table 4-2 displays the accuracy obtained when averaging over all subjects for different 

condition combinations. Appendix B details the classification results per subject.   
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Table 4-2. Average accuracy and standard deviation over all subjects, 

with multilayer perceptron. 

 

 

4.4.1 Comparing Four and Five Conditions 

When classifying between five workload levels, a random classifier would ‘guess’ with 

an accuracy of 20% across the five classes. Accuracy for the multilayer perceptron with 

all five workload conditions averages at 34.4%, ranging from 20.4% to 49.8% across 

subjects with all five workload conditions. The lowest classification accuracy was 

attained by a subject that produced many motion artifacts during the experiment, 

especially in the WL3 physical condition (Subject 2).  

Conditions Combinations Average Accuracy 
(stdev)  

Chance level 

WL0 - WL3 physical 76.6% (21.6%) 50.0% 

WL3 - WL3 physical 75.0% (18.6%) 50.0% 

WL0 - WL2  56.1% (16.4%) 50.0% 

WL0 - WL3  61.7% (16.5%) 50.0% 

WL0 - WL4  71.2% (13.0%) 50.0% 

WL2 - WL3  55.9% (8.0%) 50.0% 

WL2 - WL4  63.4% (8.9%) 50.0% 

WL3 - WL4  56.4% (12.3%) 50.0% 

WL0 - WL2 - WL3  40.6% (7.9%) 33.3% 

WL0 - WL2 - WL4  59.0% (12.5%) 33.3% 

WL0 - WL3 - WL4  48.6% (9.3%) 33.3% 

WL2 - WL3 - WL4  40.1% (7.6%) 33.3% 

WL0 - WL2 - WL3 - WL4  34.8% (8.8%) 25.0% 

All five conditions 34.4% (10.5%) 20.0% 
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Similar accuracy results are obtained when comparing the four graphical conditions. An 

average accuracy of 34.8% yield similar conclusions (compared to a chance level of 

25%). Individual results range from 22.5% to 45.8%. In this case, the subject with the 

lowest accuracy was the only left handed participant (Subject 5). It has been 

hypothesized that left and right handed participants have a different brain organization, 

which might be reflected in the data results (Toga & Thompson, 2003). 

Overall, it is apparent that we can distinguish between four or five classes with 

accuracies better than random. However, results suggest that the granularity between a 

large number of workload classes was not good enough to differentiate each class in the 

presence of the other classes with high accuracy. Therefore, our further analysis focuses 

on subsets of workload conditions.  

4.4.2 Analysis of Graphical Blocks 

In this section, we make comparisons between workload levels viewed in the graphical 

interface. All combinations yield better results than average, but some perform better 

than others. We will analyze them in two subgroups by comparing them two by two, or 

three by three.  

When observing the results from the classification of two classes at a time (Table 4-3), 

we observe an average accuracy of 60.8%. This accuracy is low (compared to a chance 

level of 50%), but we see potential in it. 
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Table 4-3. Accuracy from the comparisons of 2 workload levels 

 WL2 WL3 WL4 

WL0 56.1% 61.7% 71.2% 

WL2  55.9% 63.4% 

WL3   56.4% 

 

Specifically, results from the comparison of two contiguous workload levels are the 

lowest of the group (approximately 56% for the comparisons of WL0 versus WL2; WL2 

versus WL3; and WL3 versus WL4) while we obtain the largest accuracy when comparing 

WL0 and WL4.  

Results from the 3 condition comparisons yield lower values, but the difference with 

chance level is approximately the same (11.3%). The results containing workload level 

three (WL3) all yield lower results, which indicates that this level might not be 

independent from the others (WL2 or WL4), so it is harder to classify. Given this 

observation, we are interested in looking in more details at two comparisons that do not 

include WL3.  

Case study: comparing no, low and high workloads 

Consider the results of workload level 0, 2, and 4, as displayed in Figure 4-6. 

Classification accuracies range from 41.15% to 69.7% depending on the subject. Given 

that a random classifier would have 33.3% accuracy, the results are promising. We 

observe a correlation between performance and accuracy results in subject five, which 

had the lowest classification accuracy: this subject also had incorrect responses to the 
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number of each color seen for every WL4 task. Therefore, it is possible that the subject 

‘gave up’ or became distracted part way through the WL4 tasks, which could result in 

skewed WL4 activations. However, we observed this subject do a high number of 

motion artifact, which is likely to be the cause of the results. Despite the lower 

classification accuracies for subject 5, it seems that we can predict, with some 

confidence, whether the subject was experiencing no workload (WL0), low workload 

(WL2), or high workload (WL4).  

 

Figure 4-6. Accuracy with WL0, WL2, and WL4 considered.  

The horizontal line represents chance level at 33%. 

Case study: comparing low and high workloads 

We observe a slight increase in accuracy when comparing low (WL2) and high (WL4) 

workload levels only by removing WL0 from the training and testing data although the 

chance level is now at 50%. In this case, average classification accuracies were 69%, 

69%, 60%, 70% and 49% for subjects 1 to 5, respectively (Figure 4-7). Again, the fifth 

subject’s results are much lower than the other subjects’ results for the same reasons 
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expressed before. While average classification accuracies were higher when we 

considered only WL2 and WL4, the ability to classify three classes of workload as 

opposed to two classes may be worth a slight decrease in accuracy.  

 

Figure 4-7. Accuracy with WL4 compared to WL2 or WL0. 

The horizontal line represents chance level at 50%. 

We see a similar situation when we remove WL2 from our previous case study data and 

only focus on differentiating between WL0 and WL4. In this case, classification 

accuracies range from 57% through 90% accuracy depending on the subject. Subject 5 

had the lowest accuracies in all situations. This could be attributed to the subjects’ 

response to WL4 tasks. These results indicate our ability to differentiate the presence of 

brain activity in the data.  

4.4.3 Analysis of Graphical versus Physical Blocks 

We now observe the differences between the graphical and physical user interfaces for 

the third workload level. The average accuracy was 75%, with a range from 44.6% to 
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90.6%, and accuracy greater than 73% for all but one subject (Figure 4-8). The subject 

with the lowest accuracy was left handed. The results show differences between the 

two types of displays, which indicate cognitive differences that may be due to the 

activation being located in different areas of the brain.  

 

Figure 4-8. Accuracy with WL3 Graphical and WL3 Physical.  

The horizontal line represents chance level at 50%. 

4.5 Discussion 

With the exception of the subject with motion artifacts, we observed positive 

classification results, which are useful from a HCI perspective. However, our current 

results show that we have moderate success at differentiating a large number of mental 

workload states. This can be attributed to both the algorithm chosen for analysis and 

the task granularity of the experimental protocol. Higher results were obtained by 

comparing noncontiguous levels of workload, mainly by eliminating the third condition 
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(WL3). This condition is likely to be too similar to workload levels two and four. This is 

corroborated by the NASA-TLX results obtained.  

We also found distinguishable differences between the same workload levels when the 

cube was displayed in a graphical vs. physical user interface. Although we can accurately 

distinguish between the cognitive activities experienced in these two conditions, it is 

hard to identify the source of the difference, whether attributable to the workload of 

the interface, the workload of the task, or other variables affecting brain activity. 

Further studies would be necessary to establish that. However, these results encourage 

further exploration into cognitive workload associated with different interaction styles.  

Examining our results across different subjects showed considerable individual 

differences. Our low participant number is partly to blame and we believe a more stable 

accuracy could be extracted from a larger participant pool. Given the results obtained 

with the left-handed subject with the physical condition, we also hypothesize cognitive 

difference due to handedness. We also observed that the subject that produced a large 

number of motion artifacts had consistently low accuracy. 

Overall, we achieved our goal to test the ability of the fNIRS device to detect levels of 

workload in HCI, to develop classification techniques to interpret its data, and to 

demonstrate the use of fNIRS in HCI. Our experiment showed several workload 

comparisons with promising levels of classification accuracy. One of our long term goals 

is to use this technology as a real time input to a user interface in a realistic setting, 

which will be addressed in Chapter 6. 
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Chapter 5:  

Distinguishing Difficulty Levels3 

Maintaining the player’s involvement is a key component of successful games. It can be 

achieved by adapting the game’s content or difficulty in order to keep the user optimally 

challenged (Chanel, et al., 2008; Chen, 2007). As Chapter 4 demonstrated the feasibility 

of using fNIRS to evaluate the user’s mental load, we are interested in evaluating fNIRS 

ability to do the same in a gaming context. The goal of this present study is to measure 

brain activity using fNIRS’ during game play, and to distinguish the brain signal collected 

with fNIRS between different intensity levels of a computer game. The study is designed 

to ultimately lead to adaptive games and other interactive interfaces that respond to 

the user’s brain activity in real time.  

                                                           
3 The work in this chapter was originally described in Girouard, et al. “Distinguishing Difficulty 

Levels with Non-invasive Brain Activity Measurements” in the proceedings of Human-Computer 
Interaction - INTERACT (2009) pp. 440-452.  



Chapter 5: Distinguishing Difficulty Levels 

101 

The present study applies fNIRS to the human forehead, measuring the anterior 

prefrontal cortex, a subset of the prefrontal cortex. Research shows a prefrontal cortex 

response to video game playing, which lead us to believe that the video game Pacman 

could produce similar activations. Note however that most of the fNIRS studies measure 

a larger brain region, with probes that are much different than ours, although our 

current probe format has the advantage of a simple and comfortable setup.  

The arcade game of Pacman was chosen in this experiment because of its great 

potential for passive adaptability: it is easy to change the amount of enemies to 

maintain interest without overwhelming the user. This selection was based both on its 

customizable environment and on a literature review of game play (see Chapter 2). 

Pacman offers different difficulty levels that keep all other aspects identical, such as the 

scene and the characters’ behavior. We believe the results obtained with Pacman will 

translate to other games of similar mental demand.  

We developed and implemented a computer version of the game of Pacman, originally 

released by Namco (Japan). Figure 5-1 displays a snapshot of our version of Pacman. The 

user directs Pacman through a maze by pressing arrow keys, with the goal of eating as 

many fruits and enemies as possible, without being killed.  

As Chapter 4 concluded only moderate success at differentiating a large number of 

mental workload states, which suggest that a lower number of states might yield better 

results. We choose to test two activation levels—two game difficulty levels—in this 

experiment to simulate and improve the results obtained by comparing workload level 

two and four in the previous experiment.  
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Figure 5-1. A snapshot of Pacman (the yellow character on the top right corner), 

enemies and fruits on the maze, as used in the experiment (hard level). 

Two levels of difficulty, differentiated by pace and quantity of enemies, were selected 

through pilot testing. The enemies walk at a pace of one step per 1000ms for the easy 

level, and one step per 150ms for the hard level. There can be a maximum of 6 enemies 

at once on the board in the easy level, and 12 for the hard one. The maximum number 

of fruits on the board is identical for both levels of difficulty (7 fruits), with at most one 

cherry at any time. Each game started with a new, clean board. A new board contains 

four enemies and three fruits, dispersed on the board. The Pacman starts in one of the 

four corner positions, randomly selected.  

Participants were hypothesized to be able to distinguish these difficulty levels, so it was 

also hypothesized that brain measurements would show distinguishable differences in 

addition to observed differences in performance.  
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Nine subjects (4 females) participated in this study (mean age of 24.2 years; std 4.15). 

All were right-handed, with normal or corrected vision and no history of major head 

injury. Informed consent was obtained, and participants were compensated for their 

time. All knew of the game, and all but one had previously played it. Participants 

practiced the game for about one minute to familiarize themselves with our version. 

5.1 Design and Procedure 

Participants completed ten sets of two trials (one in each difficulty level) over a twenty 

minute period. In each trial, participants played the game for a period of thirty seconds, 

and rested for thirty seconds to allow their brain to return to baseline. Conditions within 

each set were randomized for each subject. The experimental protocol of alternating 

30s-long windows of activation and rest was designed to take into account the slow 

hemodynamic changes that occur in a time span of 6-8 sec (Bunce, et al., 2006) as well 

as a short game cycle that nonetheless allowed performance to level off. Figure 5-2 

illustrates the experimental protocol. 

 

Figure 5-2. Experimental protocol: a minute of baseline, followed by 10 random sets of 

30 seconds of playing time, then 30 seconds of resting time for each condition. 

In addition to fNIRS data, we collected performance data—number of times Pacman is 

killed, as well as number of fruits and enemies eaten. At the end of the experiment, 

Randomized 

Easy Hard Rest Rest 

60s  30s  30s  30s  30s 

Baseline 

10 times 



Chapter 5: Distinguishing Difficulty Levels 

104 

subjects were asked to rate the overall mental workload of each game level with the 

NASA Task Load Index (NASA-TLX) (Hart & Staveland, 1988), a widely used measure of 

subjective mental workload used here as a manipulation check. The NASA-TLX for each 

level was administered using a paper version (two in total).  

5.1.1 fNIRS Equipment  

We chose to use the data from the two last sources of each probe (with source-detector 

distances of 2.5 and 3cm), because they reach deeper into the cortex. The shallower 

source-detector axes are thought to pick up primarily systemic responses happening in 

or on the skin. Selecting deeper measures is hypothesized to improve our results.  

5.2 Analysis Techniques and Results 

5.2.1 Behavioral Results and Performance Data 

We performed an analysis on the non-brain data collected, that is the NASA-TLX results 

and the game performance statistics. The NASA-TLX data was meant to confirm that 

users perceived the two difficulty levels as different. Results indicated an average 

mental workload index of 26 (std 12.9) for the easy level, and 69 (std 7.9) for the hard 

level, on a 100 point scale. This difference was significant according to a two sided t-test 

(p<0.01), and confirm our manipulation.  

We also examined the performance data. Every data source collected showed a 

significant difference between the two difficulty levels (p<0.05). Figure 5-3 displays the 

average value of the data collected.  
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Figure 5-3. The difference between each level is significant for each data type.   

The graph shows data collected, with standard deviation, averaged over trials and 

subjects. 

5.2.2 Brain Data Analyses 

We performed two analyses of the brain data to confirm the presence of differences in 

hemoglobin concentrations for the different conditions: a classic statistical analysis to 

establish the differences between conditions, and a more novel task classification that 

will show the possibility of using this data in a real-time adaptive system.  

5.2.3 Brain Data Preprocessing 

Given the assumption that the brain returns to a baseline state during each rest period 

following the stimuli, even though it may not be the same baseline state in each rest 

period, we shift each trial so that the initial value is zero to control for differences in 

initial state. Finally, we separate each trial according to Activeness—whether the user 

was playing or resting. Figure 5-4 illustrates trials of data for a particular stimulus.  
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Figure 5-4. Example of fNIRS data, zeroed. 

The red, ticker line indicates the mean of all trials. The left half of the data was taken 

when the user was playing the easy Pacman, and the right half was the rest period 

following.  

5.2.4 Statistical Analysis of Brain Data 

For the statistical analysis, we average each trial of each condition to get a mean value 

of oxygenated hemoglobin [HbO] and deoxygenated hemoglobin [Hb], for each difficulty 

level, activeness, hemisphere and channel. We then apply a factorial repeated measures 

analysis of variance (ANOVA) on Difficulty level (2) x Activeness (2) x Hemoglobin Type 

(2) x Hemisphere (2) x Channel (2). This factorial ANOVA will observe differences within 

each participant, and determine if they are significant across participants. This is the 

same analysis as performed in Chapter 3, apart from the two leading factor, specific to 

this study. The full statistical results can be found in Appendix A-2.  

If the end result is to construct a system that can respond to different individuals with a 

minimum of training, we need to know how different we should expect individuals to 
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be—hence including subjects as a factor in the analysis. Given the novelty of the fNIRS 

method, and the lack of well-established analysis methods in previous work in this area, 

the cortical distribution of the combination of channel and hemoglobin type effects 

cannot yet be predicted beforehand. In addition to the statistical significance, we report 

the effect size of the interaction (ω2), which is the magnitude of the observed 

interaction, and indicates practical significance. An omega-squared measure of 0.1 

indicates a small effect, 0.3 a medium effect and 0.5 a large effect (Field & Hole, 2003).  

We found the main effect Hemoglobin Type to be significant, with a medium effect (F(1, 

8)=6.819, p<0.05, ω2=0.39). This was expected, because [Hb] and [HbO] are present in 

different concentrations in the blood. The interaction of Channel x Hemoglobin Type is 

also significant, with a medium effect (F(1, 8)=5.468, p<0.05, ω2= 0.33), indicating that 

[Hb] and [HbO] are not the same at a given channel. 

Game-playing compared to resting are significantly different as an interaction with 

channel with a large effect size (Activeness x Channel, F(1, 8)=27.767, p<0.001, ω2= 

0.75), showing that there is a difference between playing Pacman and resting, and that 

this difference varies as a function of the cortical depth of the measurement (that is, the 

source-detector distance, or channel). We also observed that the interaction of 

Activeness x Channel x Hemoglobin Type is significant, with a medium effect (F(1, 

8)=5.412, p<0.05, ω2= 0.32), as illustrated in Figure 5-5.  
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Figure 5-5. Mean plot of the interaction of Activeness x Channel x Hemoglobin Type.  

Finally, we observed a significant interaction of Difficulty Level x Activeness x Channel x 

Hemoglobin Type, with a small effect size (F(1, 8)= 7.645, p<0.05, ω2= 0.18). This 

interaction shows that we can significantly distinguish between the activeness of the 

participant, and the degree of difficulty of the current game when data from all 

channels and hemoglobin type are used as features.  

This confirms our initial hypothesis. The ANOVA results indicate significance between 

the play and rest conditions, and the two difficulty levels. 

5.2.5 Machine Learning Classification of Brain Data 

Statistical analysis confirmed our hypothesis that the brain signals in the different 

conditions were significantly different. We then wanted to determine whether this 

signal could be used in an adaptive user interface. To do this, we used machine learning 

to train a classifier.  
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We chose to explore a second type of classification technique, called sequence 

classification (Dietterich, 2002). While sliding windows demonstrated some potential in 

Chapter 4, careful observation of the fNIRS data revealed that the curves are exactly 

that, curves, not plateaus, as illustrated in Figure 5-4. Hence a technique that relies on 

the idea that small slices of the same condition will look alike is not as appropriate. As 

opposite of the sliding window, sequence classification considers the entire task as an 

example, instead of slicing it into a large number of examples. Specifically, sequence 

classification applies a label to an entire sequence of data, and uses each data point as a 

feature (Figure 5-6). In our case, a sequence is one trial, containing 180 points. 

 

Figure 5-6. Schematic diagram of sequence classification.  

Each curve (one collected brain measure) is sliced into task-sized chunks, with each 

time point as a classification feature.  

Because of our multivariate data (8 recordings for each time point: 2 probes x 2 

channels x 2 hemoglobin types), we classify each channel individually first. To combine 
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the results of all these classifications, each classifier votes for the label of the example. 

We used a weighted voting technique that sums the probability distribution of each 

example by each classifier.  

The classification algorithm used is k-nearest-neighbors (kNN), with k=3. kNN uses the 

label of the three most similar examples (the closest neighbors) to the example to 

classify, and assigns a label based on the weighted average of their labels. We used a 

random 10-fold cross-validation in all classifications. We trained the classifier on part of 

one subject's data, and then tested for this specific subject with the left out data. This 

procedure was repeated for each subject. The cross validation resulted in test sets of 2 

or 4 examples of each class. This cross validation is similar to that of Chapter 4. 

We used the same preprocessing as for the statistical analysis, but we explored the 

difference when zeroing the data. In the statistical analysis, we “zeroed” the data, 

meaning that we shifted the trial so that the first datapoint was zero, under the 

assumption that the brain had returned to baseline. In this analysis, we tested both 

zeroed data, and non-zeroed data (see Figure 5-7 for a visual example). We were 

however more interested in observing the results for non-zeroed data, because this data 

is more similar to the one we would have access to in a real time brain-computer 

interface.  
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Figure 5-7. Example of zeroed (left graph) and non-zeroed data (right graph).  

Left graph identical to Figure 5-4. 

We attempted three types of classification: (a) Activeness (play versus rest), (b) Difficulty 

level (easy versus hard), and (c) Two difficulty levels and rest (easy versus hard versus 

rest). To accomplish each classification, we selected and/or grouped the trials 

differently. For Activeness, we combined all playing trials into one class, and all resting 

trials into another to form two classes (20 examples of each class). For Difficulty Level, 

we compared the easy and hard levels using the play trials only (10 examples of each 

class). Finally, in Two difficulty levels and rest, we compared three conditions: the play 

period of the easy level, the play period of the hard level, and all rest periods.  

Our initial implementation used individual classification (only trials of one subject 

classified together). We call this “Per subject classification”. Most BCI work is done this 

way, per subject, where we train and test on one subject’s brain activity. Figure 5-8 

shows the average accuracy of each type of classification, for non-zeroed data, with 

classification done per subject (accuracy averaged over subjects). We began with non-

zeroed data as it represents the most likely parameter for a real time system. 
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Figure 5-8. Average accuracy for different classifications for non-zeroed data, per 

subject classification, with standard variation and random classification accuracy.  

We also explored the possibility of bypassing this step by pooling all the data together, 

which is to classify all subjects together. We label this method “Combined subjects 

classification”. Table 5-1 illustrates the three possible analyses produced: the table 

shows the average accuracy of each type of classification, for zeroed and non-zeroed 

data, per subject classification, and combined subjects classification. 
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 Table 5-1. Average accuracy for different classification variations.  

The gray cell indicates the highest result of the table. The standard deviation, when 

available, is indicated in parentheses. 

 

 

Difficulty levels Non-zeroed Zeroed 

Per subject 61.1% (12.4%) 55.6% (16.3%) 

Combined 55.6% 54.4% 

 

Two difficulty levels and rest Non-zeroed Zeroed 

Per subject 76.7% (5.7%) 75.6% (8.4%) 

Combined 67.8% 71.4% 

 

There are two elements to observe in the tables of results: (1) a comparison between 

the results from averaging the results of the classification of each subject individually 

(per subject) or from running the data from all subjects together (combined subjects); 

and (2) an evaluation of using the non-zeroed data versus the zeroed data. The highest 

result (grayed out) in all tables happens to be the data per subject and non-zeroed, 

identical to Figure 5-8. 

Activeness Non-zeroed Zeroed 

Per 
subject 

94.4% (3.7%) 93.1% (6.1%) 

Combined 83.3% 91.4% 
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5.3 Discussion 

While some might argue that performance data is sufficient to classify the difficulty level 

of a game and can be obtained without interference, the goal of this study is to 

investigate the use of the brain measurements with fNIRS as a new input device. In a 

more complex problem, performance and brain data coming from fNIRS might not be as 

related, e.g. if the user is working hard yet performing poorly at some point. In addition, 

distractions may also produce workload increases that would not obvious from 

monitoring game settings and performance, and thus may necessitate brain 

measurements. That is, a participant playing a simple game while answering difficult 

questions might also show brain activity relating to increased workload that would be 

incomprehensible based only on performance data (e.g. Nijholt, et al., 2008). In real, 

non-gaming situations, we might not have performance data like in the present case, as 

we don’t always know what to measure— how hard is an air traffic controller working, 

or a person creating a budget on a spreadsheet? The use of the brain signal as an 

auxiliary input could provide better results in these situations. 

Our analyses show that we can distinguish between subjects being active and passive in 

their mental state (Activeness), as well as between different levels of game complexity 

(Difficulty Level). The classic statistical analysis confirmed that these conditions 

produced different patterns in blood oxygenation level, and the machine-learning 

analysis confirms that these patterns can be distinguished by the classifiers used. 
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5.3.1 Brain Activation When Playing Pacman: Play versus Rest 

Results indicate the presence of a distinct brain signal when playing Pacman, in 

comparison to the rest periods. The Activeness classification in Figure 5-8 yields an 

average accuracy of 94.4% (for non-zeroed data, classified per subject). It indicates a 

noticeable difference between the playing signal, and the resting signal. This 

corresponds to the results obtained with the statistical analysis, where Activeness was a 

significant factor in multiple interactions. This provides real time measurements that 

could be used in an adaptive interface. Our results corroborate those of previous studies 

that showed prefrontal cortex activity related to video games, measured with fNIRS.  

5.3.2 Difficulty Levels: Easy versus Hard 

The Difficulty level of the game was shown to be a significant factor in this experiment in 

both types of analyses. This is supported with the fact that users perceived the two 

levels as being significantly different according to the NASA-TLX. Hence, we can say that 

there was a significant cognitive difference between the two levels. Previous fNIRS game 

experiments (Matsuda & Hiraki, 2005, 2006; Nagamitsu, et al., 2006) only analyzed 

stimuli versus non-stimuli periods (which in this experiment we have called activeness), 

and not two levels of difficulty, making this result an advance over prior work. 

However, the statistically significant interaction that included Difficulty Level had a small 

effect size, and classifying the difficulty of playing periods yields an average accuracy of 

61.1% (for non-zeroed data, classified per subject). This relatively low accuracy indicates 

that it is difficult with this classifier to differentiate between the two levels, which relate 

to the small effect size found in the statistical analysis. We also observed significant 
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inter-subject variability through a high standard deviation: only four participants scored 

between 65% and 85%. This indicates that the two difficulty levels might be significantly 

different with only part of the participants. As everyone’s brain varies greatly, this is not 

a surprising result. Implications of this result for human computer interaction include 

the fact that a brain computer interface using such measures could only be accessible to 

a subset of the population. However, a study with a larger number of participants is 

necessary before making a clear statement to that effect.  

A comparison of three types of conditions (Two difficulty levels and rest) indicates an 

encouraging average accuracy of 76.7% (for non-zeroed data, classified per subject), 

explained by the low differentiation between the difficulty levels, and the high 

separation between the activeness of the subjects. We must note that the difference in 

brain signal measure is not strong. One explanation may be that the difference in 

mental processes between each level manifests itself in other brain locations besides 

the anterior prefrontal cortex (location measured), such as in the dorsolateral prefrontal 

cortex. It could also be that the difference between the two difficulty levels was not big 

enough to cause strong changes in activation.  

Results are consistent with prior work. Distinguishing work from rest was relatively easy, 

but discriminating different workload levels was harder, with significant inter-subject 

variability. Similar results have been found over decades of EEG work (e.g. Allison & 

Polich, 2008; Gevins & Smith, 2003), which may suggest fundamental limitations in 

making fine discriminations between two similar workload levels. Physiological signals 

produce similar results (Chanel, et al., 2008). 
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Current findings indicate the presence of brain activation in the anterior prefrontal 

cortex when playing Pacman. Because the activation of the different levels of difficulty is 

correlated with mental workload (measured with NASA-TLX), we can presume that the 

difficulty level in this experiment is also correlated with mental workload.  

5.3.3 Exploring Different Classification Methods 

During our machine learning classification, we explored two data processing and 

variation of in the analysis. 

Per subject or combined subjects classification 
At first, we examine the difference between individual and grouped datasets 

classification. If we observe the non-zeroed data, we observe an increase of 11.1% in 

accuracy of the Activeness classification by averaging the data individually. This trend 

can be observed for each type of classification: we note that the individual runs are on 

average 8.3% higher than the runs of all subjects when using non-zeroed data. However, 

the average increase when using zeroed data is only of 1.4%. We also observe a high 

standard deviation of the averaged individual runs with zeroed data, indicating that 

many per subject accuracy are below that of the classification of combined subjects.  

Overall, this tells us that both types of accuracies are within similar range. We may get 

higher accuracies when classifying subjects individually when using non-zeroed data, 

and higher results when running all subjects combined when the data is zeroed. Those 

results are encouraging because it means we can use data from multiple subjects to 

train a classifier. However, because the cross-validation was run with random samples 

of the data (which are unlikely to be entirely from one subject), this does not indicate 
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we can use a new subject without any training. Additional analyses training on the data 

of all but one subject, and testing on that left-out subject would be interesting. 

Using zeroed or non-zeroed data 

From the point of view of data zeroing, we observe that with per subject classification, 

the zeroing of data produces reduced accuracy (on average, by 3.5%) and increased 

individual variation (higher standard deviation), while it increases the accuracy when 

classifying all subjects at once (by 3.5% on average). For the individual results, we can 

attribute the decrease to the fact that the first few points of the data are very similar—

the first point of every example is zero, and the following ones are very closely related 

(see Figure 5-7). Hence we are using a reduced amount of features to classify them. For 

the results of classifying combined subjects, we find that the zeroing performs a 

“normalization” of the data between subjects (by shifting data), which leads to better 

comparisons and classification. Other types of normalization could be possible, such as 

scaling the data, but they were not investigated in this analysis. More normalization 

could lead to better results, especially when classifying on multiple subjects at once. 

 

Overall, we believe the machine learning results are noteworthy. They show the ability 

of fNIRS data to be classified easily and the potential they can have to be used in an 

adaptive interface. In the long run, our goal is to be able to classify data in real time. The 

data collected in this experiment suggest to run per subject classification when using 

non-zeroed data, and to use the classification of combined subjects when using zeroed 

data.  
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5.4 Conclusion 

In this chapter, we have shown that functional near-infrared spectroscopy can 

distinguish between the brain at rest and the brain activated when playing a video 

game, both using statistical analysis and machine learning classification. We also 

demonstrated that we can differentiate two levels of difficulty with some success. The 

activation of the different levels of difficulty is correlated with mental workload, 

measured with NASA-TLX. Hence, we can presume that the difficulty level in this 

experiment is correlated with mental workload. However, our classification accuracy 

was low when distinguishing easy or hard levels.  

Saito et al observed a larger activation cluster in the dorsolateral prefrontal cortex with 

the games of Othello and Tetris than with Space Invaders (Saito, et al., 2007). This was 

justified with the fact that Othello and Tetris require spatial logical thinking (planning 

and memory of prior moves). The game of Pacman relates more to Space Invaders than 

to Othello or Tetris, as both are arcade games, and not puzzles, suggesting the 

possibility of a stronger signal with a different game. In addition, previous work using 

fNIRS to study video games compare different types of games (e.g. shooter game versus 

puzzle game), which could be interesting to experiment with, such as contrasting 

different levels in other types of games. This could verify whether differentiating two 

levels of video games yield weak results in other game types, or that Pacman’s main 

brain activation is located elsewhere. Finally, while their results were weak, Hattahara et 

al. (2008) implied that expertise is an important factor in the prefrontal cortex activity 

when playing games. It would be interesting extension to include a larger number of 

subjects with varying levels of experience with the game and compare their results.  
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In a larger research context, exploring the use of fNIRS in an adaptive interface would 

prove interesting for the HCI community. Results of the comparison of two different 

levels could be applied to other games of similar mental demand. The correlation 

between mental workload and difficulty levels in this experiment indicates we could also 

apply the current results to general applications that respond to such measurements.  
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Chapter 6:  

Designing a Passive BCI using fNIRS 

Real Time Classification 

While most work using fNIRS uses offline analyses to evaluate the data collected, the 

key component of brain computer interfaces is the ability to perform real time analyses. 

Many researchers argue that their work could be converted and done in real time (e.g. 

Sitaram, et al., 2007) including our previous chapters, yet we found few fNIRS systems in 

the literature that do (Coyle, et al., 2007; Luu & Chau, 2009). The existing systems use 

simple paradigms, making decisions with a threshold or by comparing the signal from 

two previous tasks. We also found many BCI systems that operate in real time, 
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processing EEG data streams, and controlling interfaces. We learn from these tools and 

apply their principles to the design of an fNIRS real time system.  

We have developed a software system that allows for real time fNIRS brain signal 

analysis and machine learning classification of affective and workload states called the 

Online fNIRS Analysis and Classification system (OFAC). This system receives and 

processes brain signals and event markers, automatically recognizes the current 

cognitive state using a database of previously recoded signals and machine learning 

techniques, and outputs this state to the interface, allowing for the creation of 

interfaces that adapt and change in real time according to traditional inputs as well as 

cognitive activity. OFAC offers the user an additional communication channel based on 

brain activity, providing multimodal interaction. 

Our work aims at reproducing the procedures used offline in previous work, adapting 

them to be suitable for real time input to a user interface. This chapter presents the 

OFAC system, tests and proves the system’s reliability and potential through two 

studies. Our first evaluation compares a previous offline analysis with our real time 

analysis. The second study demonstrates the online features of OFAC: its ability to 

record, process, classify and adapt simple interfaces in real time.  

6.1 Online fNIRS Analysis and Classification System 

We present a new system that uses machine learning to classify a large number of states 

in real time to obtain the user’s cognitive state. OFAC works with fNIRS data in a real 

time pipeline to feed a user interface, which can in turn adapt to the information. In this 

research, we achieved the transformation of the offline characteristics of the ISS 
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Oxymeter system (Champlain, IL) into a real time system. While their system was never 

designed to run in online, we overcame technical issues to obtain and interpret the raw 

data in real time. 

 

Figure 6-1. OFAC system’s architecture 

We created a flexible, modular architecture for the OFAC system using Matlab (The 

MathWorks, Natick, MA) (Figure 6-1). It allows for the substitution of single modules 

should another functionality be required, and accepts multiple input signals, such as the 

combination of fNIRS and EEG. The rest of the chapter will describe an fNIRS-only 

system used in the latter experiments.  

OFAC contains three types of modules for data processing: modules to receive and 

record input data into a database (one for each type of input); to pre-process and to 

filter data; and to perform machine learning classification and output the brain signal 

classification to the interface. The current system takes two different types of input: raw 
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brain data, and external markers from the application shown to the user. The raw data 

(from the fNIRS acquisition software Boxy, ISS Inc.) can include basic markers related to 

the start and stop of the real fNIRS data when the sensors are correctly in place and the 

experiment starts, as opposed to uncalibrated data. The external markers could contain 

behavioral data, for instance, to help with data classification.  

 

Figure 6-2. OFAC high-level loop. 

OFAC is a complex distributed system that can process each module on an individual 

computer. The system currently runs on two computers, one for the application with 

which the user interacts, and one for the fNIRS software and the real time processing 

program OFAC, illustrated in Figure 6-3. With this setup, the experimenter can monitor 

the user with the real time program, without interrupting the participant.  

Should the processing program take a lot of CPU power and interfere with the fNIRS 

measurement software, every program can run on a different computer (Figure 6-4). 

We are required to have a serial (real or virtual) connection between Boxy and Matlab 

OFAC System Loop 
 

 fNIRS raw data acquisition 
 Application data acquisition 
 Data storage 
 Signal processing 
  Transform to hemoglobin values 
  Filter 
  Real time visualization 
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(a Boxy constraint), but there is no restriction on the type of communication protocol 

for the link between OFAC and the application.  

 

Figure 6-3. The real time system runs on two computers, communicating through a 

serial connection. 

 

Figure 6-4. The real time system computer organization with one computer per 

program. 

This architecture imposes minimal requirements for the application software, which can 

be written in any language on any platform. The only constraint is to have the ability to 

connect with OFAC and respect a defined communication protocol, currently done 

through a serial connection. The current protocol exchanges semi-colon separated data. 

The application sends event markers with the form:  

trial number; task name (or code); application timestamp 
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In turn, OFAC sends classification results with the form: 

predicted class; {class probability distribution} 

OFAC provides both an online and offline mode. The latter provides a tool to explore 

previously recorded data with the OFAC system for research purposes, such as 

evaluating the impact of different filtering methods, or classification algorithms.  

 

The following descriptions explain both the general components of OFAC and the 

specific implementation used in our studies.  

6.1.1 Data Acquisition and Storage 

The current system received two data streams: event markers from the application and 

raw brain signals. It stores the data as it comes in in a database, preventing data loss 

should the system have a major malfunction.  

The synchronization of the system and the different data sources is done with a 

timestamp of the fNIRS data as soon as it comes in. The application event marker, read 

immediately after (if any), is time stamped with the raw data time. 

6.1.2 Signal Processing 

Our work aims at reproducing the procedures used offline in previous work (e.g. 

Chapter 5), adapting them for function suitable for real time input to a user interface. 

We first convert the raw values in light absorption changes. We apply a moving average, 
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removing the high frequency noise (Figure 6-5). The filtered data is converted into 

oxygenated and deoxygenated hemoglobin concentrations using the modified Beer-

Lambert law (Chance, et al., 1998). 

 

Figure 6-5. Moving Window of 19 points. 

6.1.3 Feature Generation and Classification 

To mimic the procedure used in the previous analysis, we implemented the machine 

learning technique called sequence classification (Dietterich, 2002). OFAC calls Weka 

(Hall, et al., 2009) to perform the training and testing of examples created using 

sequence classification. Using Weka gives OFAC access to a large library of classification 

algorithms. When enough training data has been accumulated, we first call the 

classification algorithm to obtain the classifier, and then this classifier is used to test the 

examples as they come in. To allow flexibility in the analysis, the system can test 

examples one at a time, or in groups of points.  
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6.1.4 Summary and Additional Features Implemented in OFAC 

We have implemented a few functions which could be of use for future analyses, 

although they are not all employed in the following experiments. Table 6-1 summarizes 

the current data processing capabilities of OFAC.  

Table 6-1. OFAC data processing capabilities. 

Signal Processing Feature Extraction Machine Learning 
Algorithms 

 Baseline filtering 

 Hemoglobin conversion 

 Band-pass filtering 

 Moving average filtering 

 Channel selection 

 Data zeroing 

 Cutting a few seconds  

 Sequence classification 

 Sliding window (w=1)  

 Class merging 

 Class selection 

 Access to Weka  

k-nearest-neighbor, 

support vector 

machines, etc. 

 Individual or batch testing 

 Baseline threshold 

 

We have also integrated machine learning evaluation tools, such as calculating the 

accuracy of the subject’s session, displaying the confusion matrix and providing a basic 

classification results visualization graph.  

6.1.5 System Monitoring and Visualization 

Real time monitoring of the data becomes a critical factor with online systems. We 

provide two ways to keep an eye on the process. First, we output status updates to the 

command line, giving a snapshot of the system. Those updates are mainly of five types: 

the general algorithm’s phase (baseline, training, or testing phase, or not currently using 
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the measurements); the measurement number, the trial number and the task in 

progress; event markers received and classification results sent; classification calls to 

Weka; and any system output or errors. Figure 6-6 displays an example of the displayed 

status updates. 

Figure 6-6. Example of status messages while running a subject 

[Point #0] NOT_MEASUREMENT period 

Msg from reading the fNIRS buffer: "A timeout occurred before the 

Terminator was reached." 

[Point #0] was longer than 0.16s (took 2.0849s) 

[Point #1] was longer than 0.16s (took 0.91737s) 

[Point #92] fNIRS Marker: 1 

[Point #97] Application Marker: 0;baseline;1000 

[Point #97] BASELINE period 

[Point #100] Status msg: baseline period; Current task: 0.5s elapsed 

[Point #200] Status msg: baseline period; Current task: 16.5s elapsed 

[Point #300] Status msg: baseline period; Current task: 32.5s elapsed 

[Point #400] Status msg: baseline period; Current task: 48.5s elapsed 

[Point #480] Application Marker: 1;video;62195 

[Point #480] Baseline calculated 

[Point #480] TRAINING period 

[Point #480] was longer than 0.16s (took 0.27926s) 

[Point #500] Status msg: training period; Current task: 3.2s elapsed 

[Point #600] Status msg: training period; Current task: 19.2s elapsed 

[Point #690] Application Marker: 1;video_rest;95864 

[Point #700] Status msg: training period; Current task: 1.6s elapsed 

[Point #715] Application Marker: 1;tetris;99864 

... 

[Point #6434] Application Marker: 14;tetris_rest;1014944 

[Point #6459] Application Marker: 15;video;1018944 

[Point #6459] TESTING period 

[Point #6454] Classification: TRAINING data 

Preparing data 

Class <tetris> (0): 2631 points 

Class <video> (1): 2647 points 

Keeping 5278 of 5974 original data points -- Deleting classes not 

used 

Converting <fNIRS-train> from matlab to weka 

Running weka with classifier: functions.SMO -C 1.0 -E 1.0 -L 0.0010 -

P 1.0E-12 -N 0 -V -1 -W 1 

Saving training data and classifier 

... 

[Point #6641] Application Marker: 15;tetris;1052974 

[Point #6700] Status msg: testing period; Current task: 9.4s elapsed 

[Point #6800] Status msg: testing period; Current task: 25.4s elapsed 

[Point #6828] Application Marker: 15;tetris_rest;1083004 

Classification: TESTING 

Sending to App: t;0.9;0.1 

[Point #6853] Application Marker: 16;video;1087004 

[Point #6900] Status msg: testing period; Current task: 7.5s elapsed 

[Point #7000] Status msg: testing period; Current task: 23.5s elapsed 

[Point #7041] Application Marker: 16;video_rest;1117019 

Classification: TESTING 

Sending to App: v;0.0;1.0 

... 
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We also provide a visual display of the data (Figure 6-7). The interface has four panels: 

the top left plot contains the raw data (as it is received by the system); the bottom left 

plot contains the light absorption values and the filtered absorption values; the bottom 

right plot is hemoglobin values; and the top right plot shows the running times (to 

monitor lag time). While the interface can be updated with every new point as it comes 

in, this update slows down Matlab and it becomes unusable within a few minutes: 

Matlab is simply not designed to handle this type of plotting. Instead, we take a 

snapshot of the plots every few seconds and update the interface.  

 

Figure 6-7. Real time visualization interface. 
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6.2 Generic Synchronous Experimental Protocol 

We present a generic experimental protocol to use with the OFAC system (Figure 6-8). 

The system currently operates in a synchronous mode, meaning that the user is bound 

by a specific task schedule. However, since our signal is analyzed continuously, a 

different classification algorithm with the same architecture could allow for an 

asynchronous mode of operation. 

In each protocol, we start by collecting baseline data (around a minute). This lets the 

user relax, and it allows us to measure their brain at rest. Following comes a training 

period, where the user repeats tasks for a certain number of times. This period is 

designed to collect examples of the user’s brain signal for each task, in order to predict 

it later. The training period should include rest periods, used to allow the user’s brain to 

go back to a rested state. This is a typical requirement for fNIRS experiments. The 

collected data is then used to train the chosen classifier. The remainder of the 

experiment uses the trained classifier to periodically test the brain signal received.  

 

Figure 6-8. Generic experimental protocol. 

6.2.1 Differences Between Online and Offline Analysis 

The challenges when transforming offline analyses so they are performed in real time 

resides mostly with the fact that the full dataset is not equally available. In offline 

Baseline Training Testing 
rest a b b a   a b ? ? ?   ? ? ? 

  

Train classifier 
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analyses, the whole dataset is available at once, while in an online system, we only have 

the amount of data collected so far, reducing the total information available. This 

element affects mostly two components of systems, the data filtering and the 

classification. Most of the differences in accuracy observed between offline and online 

analysis of the same data will be explained by this.  

While the machine learning classification algorithm is not affected by the offline/online 

distinction, and we can use identical algorithms, the data available to train (and test) the 

algorithm does vary. For instance, offline algorithms can perform cross validation, and 

pick a random sample of the whole data set to be taken out for testing. In contrast, real 

time algorithms are bound to the order in which examples come in.  

The second challenge to acknowledge is that online systems cannot afford to have time 

consuming procedures and algorithms. The chosen signal processing method, feature 

extraction and classification algorithms must require a low computational time and 

complexity as not to slow down the whole system. On the other hand, offline systems 

are not bound by such constraint, and can use computationally slow analysis tools. They 

can afford to use the very best analysis tools, even if very consuming.  

Online algorithms also must not introduce a large delay in the data pipeline, though the 

delay’s magnitude is bound to the data stream’s frequency. Imagine a filtering algorithm 

that requires a window of 30 points on either side of the point to filter. If the data 

stream’s temporal resolution is 100Hz, this represents a delay of 180ms between the 

time this point comes in, and the time it is filtered, while the delay is of 5s for a stream 
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frequency of 6Hz. As fNIRS has a slow response time, researchers must pay special 

attention to this challenge.  

 

We evaluate the system’s capabilities with two studies. Our first study compares online 

and offline analyses using a previous study. The second study is a proof-of-concept 

evaluation that uses the online features of OFAC to classify tasks in real time, and adapts 

an interface. 

6.3  “Real Time” Analysis of a Previous Study 

As a first evaluation of the OFAC system, we chose to run the real time analysis on 

previously recorded data to compare classification results with those obtained offline. 

To test data from a prior experiment, we used the offline mode in the OFAC system 

which loads previously recorded data and feeds the main loop one line at a time. This 

method tests whether the system can process data serially, and in a real time manner, 

meaning that we apply the same filtering algorithms as online, and the same machine 

learning classification design.  

We selected the study presented in Chapter 5 differentiating levels of a computer game 

through brain activity. It showed promising classification results, in particular for the 

Activeness classification, comparing rest and play (average accuracy of 94%). We focus 

on their offline machine learning analysis, done using sequence classification with k-

nearest-neighbor (kNN), k = 3, and 10-fold cross validation.  
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While the design of the offline analysis is typical and correct, it cannot be directly 

translated to an online analysis. For instance, the previous machine learning analyses 

used cross validation, which is not possible in real time as it requires the whole data set. 

Instead, we used the first sets of trials to be the training data, and tested on the rest, to 

reproduce a real time situation. The filtering algorithm suffers from the same problem, 

and we chose a method that only requires a partial dataset (moving window).  

The rest of the pre-processing is identical: we re-implemented the sequence 

classification technique to work in real time, and used kNN (k=3) for the analysis. 

Sequence classification uses the entire sequence of data from the last task, and 

produces a class prediction. While in real time systems one might prefer algorithms that 

work on a time point basis, where classification is done on every point that comes in, we 

chose to continue to work on a task basis using sequence classification. This algorithm 

performed well in the previous chapter, and the goal of this chapter is to compare the 

analysis with the OFAC system to previous analyses, as well to prove that it performs 

well in real time. We leave algorithm optimization to the next round of improvements.  

We tested the OFAC system’s ability to classify between the participants playing and 

resting. The original data contained 10 examples of each difficulty level: we combined 

examples of both levels to obtain 20 examples of play and 20 of rest.  

6.3.1 Analysis and Results 

We varied the amount of examples of each class in the training dataset to evaluate the 

effect on accuracy and possibly observe a minimum amount of training required to run 

real time experiments as users should invest only a minimum amount of time for the 
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training algorithm (Krepki, et al., 2007). We compared accuracy using training sets 

containing the first 2, 4, 6, 8, 10, 12, 14, 16 and 18 examples of each class (play or rest). 

We also evaluated multiple filtering windows to select a balance between a stronger 

filter and a minimum delay in the analysis stream, using filtering windows of size 1, 9, 

19, 29, 39 and 49. 

Before comparing the average values to previous results, we applied a factorial 2-way 

repeated measures analysis of variance on Size of Training Set (9) and Length of Filtering 

Window (6) to see which factors were significant in the analysis. As can be seen in Figure 

6-9, the main effect of Size of Training Set has a significant effect on the accuracy of the 

classification (F(8,64)=9.500, p<0.001). The group containing higher accuracies is 

constituted of training sets of 12 or more examples of each class (12, 14, 16 or 18 

examples). The main effect of Length of Filtering Window was not significant, nor was 

the interaction of these two factors.  

We conclude that a minimum training set of 12 examples of each class was necessary to 

obtain meaningful classification results with this dataset. We also observe that every 

filtering window tested yielded similar results, and determine that the data is well 

classified with even a small filtering window which requires a smaller delay in 

processing. Note that using a training set of 18 examples did not yield the previous 

offline accuracy of 94% (even though we tested with two examples, similar to the 10-

fold cross-validation). This result differs because the same filtering methods cannot be 

applied, and the entire dataset is not available before hand, making cross-validation 

impossible.  
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Figure 6-9. The first 12 examples (or more) in the training set produces a stable 

average accuracy of approximately 82%. 

To compare the current results with those obtained with the offline analysis, we 

averaged the accuracy results obtained with training set of 12 examples and more, and 

all filtering windows. Over all participants, the classification accuracy obtained with the 

real time analysis is 82.0% (stdev 17.3%), while the one obtained with the offline 

analysis is 94.4% (stdev 3.7%), a decrease of 12.4%. Figure 6-10 shows the average 

accuracies obtained with both analyses, for each participant. We cluster the participants 

by their difference in accuracies: the first group contains participants with a real time 

accuracy equal or higher than offline, the second group shows lower accuracy 

(difference within 15%), and the third group with participants displaying a very low real 

time accuracy.  
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Figure 6-10. Comparing the real time and offline classification accuracy for each 

participant. 

The results are promising: with the exception of two participants (s01 and s06), all 

results show accuracies over 80%, and differences between the two analyses of less 

than 15%. The real time results from three participants even equaled or surpassed 

offline accuracy.  

The new analysis is, as predicted, performing worse than the offline analysis. However, 

we consider that this decrease in performance is outshined by the main advantages of 

the analysis: classifying in real time, and the ability to reuse this information to adapt 

the interface. Therefore, we find the real time analysis of a previously recorded dataset 

a success.  
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6.4 Real Time Task Classification and Adaptation 

Having shown the classification capabilities of the OFAC system, we designed a simple 

proof-of-concept experiment to test the true online features of the Online fNIRS 

Analysis and Classification system. Our experiment has two goals: (1) to test if we can 

indeed process and classify in real time; and (2) to demonstrate a simple interface 

adaptation. To achieve these, we will distinguish between two tasks, and change the 

background music of the interface according to the predicted task.  

Given our relative success at classifying activated periods versus rest periods, we 

selected tasks that would yield these two different types of signal. The first task consists 

of showing videos to the participant, while the second task has them play a short game 

of Tetris. Based on previous work, we expect the game task to activate the anterior 

prefrontal cortex (Chapter 5; Saito, et al., 2007), and the video task to deactivate it, if 

the videos are neutral or pleasant, and calm (Leon-Carrion, et al., 2007).  

With this experimental design, we also hope to replace the typical rest condition with an 

engaging task that will not activate the aPFC. The rest task requires typically the user to 

watch a gray (or black) screen for 15 to 30 seconds, depending on the experiment. 

However, this task is not desirable in realistic graphical user interfaces: it is not engaging 

to the user; and it is not reasonable to interrupt the user to ask them to think of nothing 

for a short period in the middle of their work. But since fNIRS experimental designs are 

bound to include periods to allow the brain to go back to a rested state, we 

hypothesized that using an engaging task that does not activate the aPFC would 
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accomplish the same goal. Specifically, we believe that using a video task instead of rest 

provides a better, more realistic HCI task than watching a grey screen.  

We base our task selection primarily on four studies. León-Carrión et al. (2007) showed 

that non-arousing videos of neutral or positive valence show little activation in the 

prefrontal cortex (PFC) in a region encompassing both the aPFC and the dorsolateral 

PFC, both during and after the stimuli. In addition, Phan et al (2003) studied the effect of 

emotional arousal with pictures on the medial PFC with the use of fMRI. The activation 

found was located in areas too deep for the fNIRS probes to sense, and we do not 

expect this activation to be measured. Furthermore, pilot studies reproducing the latter 

work with fNIRS confirmed this statement. Based on those studies, we predict that a 

video task may be a suitable replacement for the typical rest task. 

On the contrary, Chapter 5 showed activation of the aPFC during a game of Pacman, and 

suggested the possibility of a higher activation with a more intellectually demanding 

game such as Tetris, extrapolating their results with those of Siato et al. (2007).  

Finally, we chose to change the background music according to the predicted task, to 

achieve our goal of demonstrating a simple interface adaptation. Music is often present 

when using computers, either related to the current task (such as when playing games), 

or in the background (Day, et al., 2009). Background music can play two different roles 

in regards to the user’s attention: a distracter or an arousal inducer. Day et al. (2009) 

found that participants were more successful at decision making when the tempo of 

background music was faster, showing that faster tempo is more beneficial for harder 

tasks, acting as an inducer. In addition, Wakatsuki et al. (2009) showed using fNIRS no 
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prefrontal cortex effect for music at low volume, while participants concentrating on 

music at high volume deactivated their PFC. We deduce from both studies that low 

volume background music at faster tempo might help the performance of a gaming task, 

and that a slower tempo should not impact the video task. While our main goal is to 

demonstrate an adaptation, it would be helpful to improve the performance or the 

satisfaction of the user’s experience.  

6.4.1 Participants, Protocol and Analysis settings 

This study included 10 healthy volunteers (5 females), between the ages of 18 and 32 

(mean 25.8, standard deviation 5.8). All participants were right-handed, had normal or 

corrected-to-normal vision, with no history of brain injury. Informed consent was 

obtained for all participants. This experiment was approved by the university’s internal 

review board.  

The session contained a total of 30 sets of two tasks (video and Tetris). Ordering of sets 

was randomized for each participant. Each stimulus was presented after a 3s fixation 

point. A minute of baseline at the beginning of the session allowed the user’s brain to 

get to a rested state. 

At the end of the session, participants answered a questionnaire pertaining to their 

experience with the tasks. Participants also rated the scenes using the same protocol as 

the one to select the videos.  
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To achieve our two goals, we divided the experiment into three parts: a training phase, 

and two testing phases - one without music, and one with adapting background music 

(Figure 6-11). To participants, part one and two are identical (no music).  

 
Figure 6-11. Experimental protocol and classification periods. 

While we hypothesized that background music or its adaptation had no impact on the 

brain data, we tested some of the examples without music. Through pilot participants 

with this protocol, we identified that fourteen examples of each class was required to 

obtain stable classification accuracies, both to classify the no-music and the music 

examples. This correlates with results obtained with the previous study. Of the 

remaining sixteen examples, ten were assigned to the music condition (six to the no-

music condition), because we are more interested showing the adapting interface.  

We applied the signal processing method described earlier, with a moving average 

window of 9. We are using sequence classification with the support vector machine 

classification algorithm. The support vector machines algorithm finds the optimal class 

separation hyperplane, with the largest margin between examples of both classes. 

As sequence classification produces a prediction at the end of a condition, the 

adaptation procedure was designed to use that prediction to change the music in the 

following block.  The tasks’ order is predetermined and alternating, meaning that the 

14 examples 10 ex. 6 ex. 

No music Music 

Training Testing 
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algorithm know that the following task is different than the current task. The algorithm 

works as follows: at the end of a task, the classifier produces a prediction. This 

prediction is then “inversed”, and the music associated with this inversed prediction 

starts to play. For example, if the current task is predicted to be a video, the algorithm 

“inverses” it to be Tetris, and the music associated with Tetris plays for the task that has 

just started.  

6.4.2 Stimuli 

For the video stimuli, we chose 30 clips that would fit the emotional criterion. The 

selected clips were 30 seconds in length, without sound, and containing mostly nature 

scenes (beach, forest, trees, streams, clouds). We preselected the scenes by asking an 

independent group of pilot participants (total of 12 participants) representative of our 

targeted experimental participants to rate a larger selection of scenes using the Self-

Assessment Manikin (SAM) (Bradley & Lang, 1994). SAM measures the dimensions of 

pleasure (i.e. positive or negative) and arousal (i.e. calming or exciting) using a visual 

scale from 1 to 9. From those results, we chose a coherent group of scenes that scored 

below 5 on the arousing scale, and above 3 on the valence scale, using the same scale 

limits as León-Carrión et al. (2007). 

For the game task, we used the Tetris Bean implementation of the classic game (Clee, 

2002), with a board of 15 columns by 20 rows, illustrated in Figure 6-12. We limited the 

game play to 30 seconds, to mimic the video’s length. We increased the speed of the 

falling blocks to move every 250ms and difficulty of the game to ensure strong brain 

activation, and provided a preview of the block to come, to add planning to the mental 
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task. Participants practiced a few games to familiarize themselves with this homemade 

Tetris version before the real experiment. 

 

Figure 6-12. Screenshot of a Tetris game. 

During the last part of the experiment, the application played quiet, continuous 

background music that changed according to the predicted task. If the predicted task 

indicated that the user was watching a relaxing video, the system would play slower 

tempo music, and it would play faster tempo music for the game task. The transition 

between the two was gradual. The slow music kept playing between tasks as to not 

interrupt the flow of the user, and the faster music was overlaid when Tetris was the 

predicted task. Both pieces of music were classical piano, intended not to cause a strong 

reaction among participants.  
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6.4.3 Results 

We analyzed the results of this proof-of-concept experiment with two questions in 

mind. Are the classification results obtained meaningful? How did the adaptation affect 

the user’s performance? 

Behavioral Results 

Clips used obtained an average valence rating of 5.7 (stdev of 1.6), and an arousal rating 

of 3.4 (stdev of 2.3). This confirms that the selected videos were calm and positive, as 

required.  

We performed two t-tests on the Tetris games performance: first to determine a 

presence of a learning effect, and second to compare the scores with respect to music 

adaptation (Figure 6-13). We assigned each trial (game) to one of 3 groups: early games 

(trials 1 to 10), mid-session games (trials 11 to 20), and music games (trials 21 to 30).  

To observe if a learning effect is present, we compared the first group (trials 1 to 10) to 

the second group (trials 11 to 20), both without music. We found a statistical 

significance between the two groups (p<0.001), showing a strong learning effect, with 

higher performance for the second set of games. Participants completed an average of 

0.85 lines per game for the first trials, compared to 1.22 lines for the second set of trials.  

We also compared the second group of trials with no music (trials 11 to 20) with the 

trials with music (trials 21 to 30) to determine the influence of the music on game 

performance. We observe no statistical difference between the performances with 

music playing, which indicates a neutral impact of the background music. This result is 
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not contradictory of our initial goal, which was to simply demonstrate an interface 

adaptation. 

 

Figure 6-13. Tetris Game Performance.  

Classification Results 

The real time classification shows a high accuracy when distinguishing between our two 

types of tasks: watching a video or playing a game of Tetris. We present the results by 

averaging them into three groups of examples: (a) examples with no background music, 

(b) examples with background music, and (c) all examples (a combination of (a) and (b)). 

Figure 6-14 illustrates the results. When averaging the examples containing no music, 

the accuracy is 89.4% (stdev 8.8%), while the results with background music average to 

82.5% (stdev 8.1%). A t-test showed no significance in the difference between the two 

groups. The overall real time accuracy is 84.9% (stdev 6.9%).  
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Figure 6-14. Accuracy results for real time classification of two tasks. 

Individually, the classification accuracy for all examples varied between 71% and 97%. 

Three participants rate equal or above 90%, meaning that out of 32 classified examples, 

the algorithm got less than 3 wrong.  

Subjective Survey Results 
Our exit survey (Appendix C) revealed that all participants noticed music playing when 

performing both tasks, but that they only paid attention to it occasionally. Some 

participants focused on it when the videos came on while others “when the music 

became more fast-paced.”  

Their interest in the music rated 2.9 on average, on a five point scale, indicated a neutral 

opinion, which confirms our music choices. They all noticed classical piano, and 

observed the difference in tempo.  
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They did find the music played on a regular pattern. The slow paced music made them 

feel relaxed, calm, and occasionally bored, while the faster pace music was entertaining 

and exciting. Two participants noticed the presence of two tracks that were overlaid, 

and found it distracting. A better integration of two tracks (actually change between 

them, instead of overlaying them) would have improved their perception of that music. 

We do not believe, however, that this had a significant impact on their experience.  

Most participants noticed that the faster music was associated with the Tetris game. 

However, the participant with the lowest accuracy during the music examples (65%) 

noted that “it did not seem like the changes from one to the other were on a regular 

pattern”, which seems reasonable considering the low accuracy achieved.  

They had a varied perception of the effect of the music on their performance. Half of 

the participants indicated that the music had no effect, while two said that it hindered, 

and three mentioned it helped their performance. They indicated that the positive 

influence was because they “were more relaxed,” and that it gave them “some rhythm,” 

while negative influence was because “it grabbed [their] attention,” or made them 

“stressed.” 

6.4.4 Discussion  

Our results demonstrate the validity and reliability of the OFAC system. Not only did the 

system operate without fault when processing and classifying the data, but the results 

obtained are very encouraging. Using a simple classification algorithm, we have 

achieved moderate to high accuracies, of up to 97% with some participants. This 

compares well to Abdelnour and Huppert (2009) who achieved 79% when distinguishing 
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between two motor tasks (left or right finger tapping) using a more complex analysis 

system, mainly an adaptive version of the general linear model that works in real time. 

With the OFAC system, we have created the first working real time passive BCI with 

fNIRS. We encourage other researchers to use our system with their experiments or 

interfaces with this demonstration. 

Our task selection was successful: Tetris does activate the aPFC, and video watching 

does not. Furthermore, the video task did replace the ubiquitous rest task. This 

conclusion has many design implications for fNIRS’ measured tasks, as experiments can 

move closer to real world scenarios.  

The differences in accuracy between the music and non-music conditions could be 

related to brain processes. For instance, the training data was not obtained with music 

playing, which might not have caught brain processes differences should they have been 

present. However, given previous work and the analysis, we attribute the core of the 

differences to technical issues. Brain signals vary in time, even for the same task, due in 

part to the presence of a trend, meaning that the further from the training period each 

classified example is, the less accurate the algorithm is likely to be. Though the current 

protocol does well to answer our research goals, further studies containing adaptation 

should contain the adapted element in the training data and be counterbalanced.  

Finally, we reached our adaptation goal as we demonstrate a simple adaptation through 

the modification of background music. However, as performance was not improved by 

the adaptation, and that it had mostly a neutral or positive impact on the user 

satisfaction, we cannot say that the adaptation improved the user’s experience. Those 
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results are in line with Kallinen et al. (2004), who found that music listening prompted 

higher overall user satisfaction and immersion, less boredom and more pleasure. 

However, low accuracies lead to higher inconsistencies in the adaptation, which can 

have negative impact on the performance of the participants. 

6.5 OFAC Discussion and Future Work 

We have learned a few lessons from our experience designing and working with a real 

time brain computer interface system. Delorme (2010) identifies and discusses 

problems related with the design and implementation of Matlab-based BCI systems, as 

we have observed some of these issues ourselves.  

We recommend to initially test and to keep improving the overall analysis through 

offline analysis of the data, especially feature extraction and classification, a suggestion 

also pointed out by Wolpaw et al (2002). Such technique was used by Kerpki et al. 

(2007), who performed cross-validation on the data allocated to the classifier training, in 

order to evaluate the performance of the algorithm. In the case of multiple sessions 

with the same user and task, Millan et al. (2007) indicates optimizing the classifier with 

the new dataset from the current session. The integration of cross-validation methods in 

OFAC would also help estimating classifier performance in pilot studies. 

More specifically, we recommend starting with a statistical analysis of the brain signal, 

before proceeding with a machine learning classification, if the first step was successful 

(Figure 6-15). The statistical analysis is meant to identify significant patterns in the brain 

activity signal, while the goal of the machine learning analysis is to assert the accuracy of 

classification, in order to perform a real time analysis. If offline classification results are 
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successful, the online classification can be performed. Note that the term "successful" 

needs to be defined, as it may refer to a personal threshold, or a general pattern of 

results, for example. 

 

Figure 6-15. Conducting analysis in brain computer interfaces. 

OFAC could benefit from more sophisticated signal processing and classification 

techniques. Additional data analysis could further resolve the temporal dynamics of 

classification efficacy, such as detecting workload changes within the first 2, 5, or 10 

seconds instead of 30. Automatic determination of the amount of training data required 

might optimize the training period for every participant and improve accuracy. Online 

adaptation of the classifier would also have a positive effect of the classification 

accuracy. Finally, we hope to accumulate a large collection of OFAC components so the 

system can benefit a large research community.  

On the application side, an algorithm could be designed to better integrate the 

predicted classes. Depending on the test paradigm, such as testing frequency, the 

application might need to acquire class results in a temporal queue as to filter this data 

to prevent quick changes in the interface (Krepki, et al., 2007). The application could 

also make use of the probability distribution to help the decision process. A predicted 

class with high probability should be adhered to with more certainty than a randomly 

selected class (when the probability distribution gives equal values to each class). 
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6.6 Adapting the Interface Passively with fNIRS 

Once we are able to accurately measure mental workload, it becomes possible to create 

systems that adapt to the users current state of mind. As we have shown, fNIRS is well 

suited for such a task because it can be portable and produces real time results. The use 

of mental workload to create adaptive interfaces is an interesting research topic.  

The design challenge is to use this information in a subtle and judicious way, as an 

additional, lightweight input that could make a mouse or keyboard-driven interface 

more intuitive or efficient. Specifically, we are exploring situations and interfaces that 

can be adapted slowly, in a manner that is subtle and unobtrusive to the user, which 

could increase productivity and decrease frustration. As a general rule for implicit 

interfaces, any visual modifications to the interface should be done carefully enough 

that the user hardly notices the change until he or she needs to (Fairclough, 2009) 

There are many issues to consider when designing BCIs. Speed and accuracy have a 

large impact in the design of the integration of such new input into interfaces (Coyle, et 

al., 2007; Schlögl, et al., 2007b). We believe that user satisfaction is at least as 

important, especially for indirect, or passive, brain computer interfaces, as the main goal 

is not always to increase productivity.  

Designers should be aware of the constraints and limitations of the measurement tool, 

and create adaptive systems that take advantage of them (or use them in a non-

obstructive way). For instance, there are limitations to using fNIRS in real time, such as 

the metabolic response measured by fNIRS occurring over a few seconds, and the 

difficulty of filtering out motion artifacts in real time. Using fNIRS as a passive 
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supplemental input will avoid some of these issues since the interface would not be 

dependent on this signal for interaction. fNIRS can be specialized in measuring short or 

medium length states, and not instant states like EEG. Interfaces can be adapted in a 

subtle matter, when a high degree of certainty in the user’s cognitive state is achieved. 

In the case of an adaptive Pacman, changing the difficulty level should not be clearly 

noticeable to the user.  

It has not been fully determined how to use mental workload to adapt an interface. 

Hancock et al. (1988) suggested that interfaces should adapt only in underload or 

overload situations. In situations of extreme workload, the performance is greatly 

reduced, and the need for regulated mental workload through interface adaptation 

becomes important. Others might argue the benefit of adapting the interface until 

mental workload is fully optimized. However, since mental workload varies with 

subtasks (Iqbal, et al., 2005), it becomes extremely hard to determine the exact, optimal 

workload for a particular user doing a particular task.  

We view two main categories of adaptations that would build on the strength of fNIRS 

for passive BCIs: either adaptation through continuous changes, or through changes to a 

future input. Continuous changes adjust subtle, lightweight elements of the user’s 

experience. Designers could modify windows properties. For instance, if the user is 

concentrated, we could minimize distractions by making the primary window the only 

one in focus, and fading the others (Girouard, et al., 2010a). The level of details of the 

content available to the user can vary according to the measured workload, presenting 

less information when the person is overloaded, to minimize their cognitive processing 
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of that information (Figure 6-16). Changing the background music is another example of 

this type of adaptation.  

 

Figure 6-16. An example of high detailed graph (left), and one of low detail (right). 

On the other hand, designers can also decide to make slightly stronger changes the next 

time the user does a particular action, or the system gets a new input. For instance, 

choices in menus could change according to the brain signal, such as unlocking magical 

functions in games if the user is in a relaxed state while in a tense situation (Ekman, 

Poikola, & Mäkäräien, 2008). It could also mean dynamically adjusting streams of 

information (emails, RSS, Twitter, etc.) to the user’s mental workload so the high 

workload user is only interrupted with very important information, leaving them to 

browse the remainder when it will not disrupt as much their current state. Similarly, a 

video communication system like Pêle-Mêle (Gueddana & Roussel, 2009) which 

supports different levels of engagement (away, available, engaged) might become more 

active when the user is underloaded, and halt completely during periods of high 

workload.  

Finally, the brain activity could also only be used in sporadic moments. The omnipresent 

screen saver application is designed to go on after a prolong period of computer 

inactivity. However, this detected inactivity might not be a true one: the user might be 
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pondering on a question, reading a long text, observing a piece of code or discussing a 

slide that is displayed on the screen. We could detect the user’s brain activity after long 

periods of computer activity, and if their brain is activated, they system would prevent 

the screen saver from starting.  

One potential pitfall of interface adaptation is the dichotomy between interface design 

rules calling for consistency, and the ability to optimize mental workload of users, hence 

their comfort. There also is the risk of creating “clumsy automation” through shifts of 

workload, communication, attention, and coordination demands, reducing the 

performance of the user through additional cognitive load (Wiener, 1989). Finally, 

adaptation can create instability, if a first situation adapts into a second, which adapts 

back into the first (Alty, 2003). Designers must also be aware of the Midas Touch 

Problem (Jacob, 1990), where every brain signal would lead to a change in the interface, 

and should take steps to avoid the problem. These problems have not been fully solved, 

but by remaining aware of them, taking steps to avoid them when possible and making 

systems individually stable, and making the adaptive behavior consistent, designers can 

minimize their impact. 

6.7 Conclusion 

This chapter describes the OFAC system, our new, real time functional near-infrared 

spectroscopy analysis and classification system, and demonstrates through two studies 

the validity, reliability and potential of the system. Our first evaluation compares our 

previous offline analysis with our real time analysis. Results show a decrease of 12% in 

classification accuracy (94% to 82%), and that a minimum of twelve examples of each 
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class is required to obtain a stable accuracy. We consider this decrease in performance 

to be outweighed by the main advantage of the analysis, classifying in real time, and the 

ability to reuse this information to adapt the interface.  

The second study demonstrates the online features of OFAC: its ability to record, 

process, classify cognitive state signals and adapt simple interfaces in real time. We 

selected two tasks that would activate and deactivate the prefrontal cortex, 

respectively: playing a game of Tetris and showing calm videos. In addition, background 

music varies according to the predicted task: slower music for relaxing videos, and faster 

tempo for the game task. We evaluated this system through classification accuracy 

(average accuracy of 85%), as well as using user satisfaction of the adaptation.  

Finally, we discussed optimal types of applications for brain input, such as continuous 

adaptation, or adaptation to a future input. The main work to be done remains to build 

adaptive user interfaces using the system, and determining how to evaluate them.  
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Chapter 7:  

Conclusion 

As interest for brain computer interfaces increases in the human computer interaction 

community, we now find more and more research that shows the ability for tools to 

measure and classify accurately specific brain signals. This new flow of information 

provides real time cognitive monitoring that can lead to usability testing, or to the 

creation of adaptive user interfaces. This opens up a new research direction, to study 

how we can intelligently make use of such brain signals as an input to the interface.  

Contrary to much BCI research focusing on using this signal as the only input to the 

interface, I wondered how useful such technology could be if applied to the general 

public as an additional input. This body of work presents fNIRS as a new input device to 

the HCI community. fNIRS shows potential by its ability to measure different brain 
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signals and its ease of use, and quick setup time. I believe this work to be an important 

step towards to using fNIRS in an adaptive user interface.  

Throughout this dissertation, I tried to prove the hypothesis that fNIRS is a good input 

technology for HCI, especially applied to the general public as an additional input, and 

answer three questions that bring us closer to the goal of using real time fNIRS 

measures of cognitive load for adaptive interfaces.  

First, I asked what kind of cognitive states we can measure using fNIRS that can be used 

in HCI contexts. Chapter 4 and 5 focused on identifying signals that can be reliably 

measured with fNIRS that are realistic to expect from human computer interfaces, and 

we found that the general concept of mental workload can be successfully measured in 

the anterior prefrontal cortex. Specifically, we observed in Chapter 4 different levels of 

mental workload qualified mostly as working memory, and successfully assess three 

levels of them at once. We also generated and measured two game difficulty levels 

which involve many elements that compose mental workload in Chapter 5. These two 

chapters are a step forward in conducting fNIRS experiments, as previous work only 

studied the activeness of the user, not multiple levels of it. However, the success of 

distinguishing multiple levels is limited. 

Along the way, Chapters 3 and 6 also provided insights into user state measures. For 

instance, Chapter 3 reinforced our mental workload findings as it measured a significant 

cognitive activity during a short term memory task. Chapter 6 showed another game 

that activated the aPFC, but also identified that emotionally calm and neutral video 
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content does not activate it. We can use those (intended) negative results to replace the 

typically necessary rest task in fNIRS experiments.  

The second question posed the challenge of developing technologies to identify those 

user states in real time. Chapter 6 was dedicated to this question and introduced the 

Online fNIRS Analysis and Classification system to perform real time processed and 

classification of signals. We proved that the OFAC system is reliable, produces similar 

classification results as an offline analysis and can communicate with an application. 

Question three inquired how we should use this information as input to an adaptive user 

interface. While I discussed adaptive systems in Chapter 6, I did not answer this 

question to its fullest. Instead, I categorized such adaptation and I proposed a series of 

adaptations possible using our system. I leave the implementation and in depth study of 

brain adaptive user interfaces to future work.  

The subgoal transcending all the questions was to find an accurate method for 

classifying multivariate sequential data from fNIRS. The thesis used two methods of 

classifying fNIRS signals: sliding windows and sequence classification. Sliding windows 

allows the observation of the average and slope of data in small, time independent 

windows. On the other hand, sequence classification looks at an entire sequence of 

data, and uses each data point as a feature. We studied both as offline techniques and 

implemented real time versions of both algorithms in OFAC. 

Finally, we presented a set of practical guidelines by synthesizing our results with prior 

work, showing which factors (physical activity or context) introduce irreparable 
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distortions in the signal, and which can be recovered from (and how). This work 

confirms a large part of the hypothesis as it showed that typical interaction techniques 

are acceptable.  

In this dissertation, I also proposed methodological insights to conducting work in this 

research area. In terms of experimental design, I outlined a generic experimental 

protocol to conduct real time fNIRS experiments. I also found a more HCI-friendly 

alternative to the typical rest task necessary to allow the brain to go back to a baseline 

state. Concerning machine learning classification, I noted the difficulty of such 

techniques and considerations for real time analysis and improvements.  

This work also fills a gap in the literature outlined by Scerbo et al. (2001). In their report, 

Scerbo et al. presented a summary of psychophysiological measures and current 

applicability to adaptive automation through workload. Their table, however, was 

missing data concerning the sensitivity—the capability of the device to differentiate 

baseline for workload—and diagnosticity—the capability of the measure to distinguish 

different levels of workload—of fNIRS. The sensitivity and diagnosticity are concepts 

proposed by O’Donnel and Eggemeier (1986), in this case redefined by Scerbo et al. My 

work fills out this information: fNIRS has high sensitivity and moderate diagnosticity.  

While I have shown that fNIRS is a good tool to use for HCI environments, the tool and 

the experiments present some limitations, especially to using fNIRS in real time, most of 

which have been discussed in Chapter 6. First, the metabolic response measured by 

fNIRS occurs over a few seconds, which creates a delay between the start of the brain 

activation and the start of signal measured. Second, it is difficult to filter out motion 
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artifacts in real time. This has implications for a real time user interface such as the lack 

of an immediate, perfect response from the system. Using fNIRS as a passive 

supplemental input will avoid some of these issues since the interface would not be 

dependent on this signal for its interaction.  

Another limitation is that fNIRS’ signal is strongly dependent on the probe and area 

measured. Additionally, our work also was only moderately successful at distinguishing 

between levels of workload, indicating a limited diagnosticity. However, using another 

probe with more sensors, placed differently, could lead to a stronger signal, as it would 

pick up changes in blood oxygenation in more locations.  

7.1 Future Work 

With those limits outlined, there is still much interesting work to be done with fNIRS 

that could benefit the HCI community. I identify four specific domains of interest: 

interface adaptation, multimodal interaction, interface evaluation and machine learning 

development. Some of domains were mentioned by Nijholt et al. (2009), and Coffey et 

al. (2010), confirming their importance. 

Developing Adaptive Interfaces 

The pioneering use of fNIRS as a real time additional input unlocked a large unexplored 

research area that is the development of adaptive brain computer interface. I tackled a 

few related issues in the thesis, but more work is to be done for the creation of 

interactive systems that adapt their behavior to current information measured from the 

brain through fNIRS as a real time input. Specifically, OFAC opens up the research field 

to create applications using fNIRS brain signals as real time input. In addition, we hope 
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to apply the BCI interface design and knowledge from the EEG community to fNIRS, as 

they have created a large number of BCI applications with EEG. 

Exploring Multimodal Interaction  

Chapter 2 mentioned that there is no inherent problem to combining different 

technologies with fNIRS. However, few researchers investigate it, probably because it 

generates an even larger data set. Kallenbach (2010) states that the “use of single 

psychophysiological measure is insufficient to create intelligent systems that adapt to 

the changing need, emotion, and behavior of their users during single interaction.” 

Multimodal input should lead to better adaptive interfaces. 

The combination of performance and fNIRS data may tell a better, more realistic story of 

the interaction of the user and the computer. A more specific evaluation of the data 

collected with each sensor, including performance data, could allow us to find and 

identify situations where performance alone is sufficient, or where fNIRS alone is 

sufficient.  

Investigating Interface Evaluation 

The area of interface evaluation with brain signals could use future work, as a literature 

review showed almost no dedicated effort. Evaluation of interfaces can lead to self-

examination after specific computer activities and usability evaluation. It can also be 

presented to others while someone is being monitored, such as Chen et al.’s 

physiological blog (2008), or to guide semi-structured problem solving, providing 

knowledge to experimenters on when intervene for provide guidance. 
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The literature, however, shows a large number of studies measuring signals in static 

experiments in preparation for use in brain computer interfaces. Many of those 

preliminary studies could be transformed to compare interfaces.  

Designing Better Classifiers 

In this thesis, we designed and tested a few classification algorithms, but there are many 

more that could be applied to this problem. We are also interested in investigating the 

possibility of creating a generically trained classifier (trained in advance over a range of 

subjects) that classifies workload information and can be used to classify workload on a 

new user without an individual classifier training run.  

Challenges to the community 

Finally, we pose challenges to the community. Observed throughout this work and 

outlined by a community of psychophysiological researchers during a workshop at ACM 

CHI 2010 (Girouard, et al., 2010b), these methodological refinements would improve 

the work in brain computer interfaces, especially for human computer interaction 

researchers.  

It would prove useful to define quality in BCI, for instance to recognize what accuracies 

are considered successful. It would also be helpful to understand and standardize how 

to get validity in the data, and how (if possible) to get and correlate it with ground truth.  

We also must create a consensus on terms to use: for instance, some researchers use 

the terms brain computer interfaces, while other use brain machine interfaces. We also 

found two definitions of active and passive BCIs (see Chapter 2). A unified front would 

help disseminate and collect information in this field.  
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Other challenges reside in the field of adaptation, as defining the possible methods of 

adaption, and determining what or when to choose them. Finally, there is a body of 

work to be done in signal processing and machine learning classification and clustering. 
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Appendix A:  

Expanded Statistical Analysis Results   

This appendix reports the statistical analysis tests and results performed in the third and 

fifth chapter. The analysis in Chapter 3 was designed to test if the presence of certain 

artifacts would interfere with our ability to collect brain signals. The tests were done to 

answer the six questions posed in Figure 3-2. Each factorial repeated measures analysis 

of variance was performed on [Hb], [HbO] and [HbT]. Chapter 5’s tests were designed to 

evaluate the presence of differences in hemoglobin concentrations between rest and 

game play, and between levels of difficulty. 

A.1. Chapter 3 - Using fNIRS in Realistic HCI Settings 

We report the p-value for tests with HCI significance, i.e. the tests from the factorial 

analysis with either the factor Cognitive Task or Artifact. Each table presents the results 
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from one comparison, and we use the general term Artifact in place of the specific 

motion produced.  

Table A-1 lists the tests performed to answer Comparison 2.1, with the following 

factorial ANOVA: Cognitive Task (cognitive task or rest) x Hemisphere (left or right) x 

Channel (4) x Time Course (7). Additional tests were performed for the [HbT] condition 

by adding Hemoglobin Type as a factor, creating the following factorial ANOVA: 

Cognitive Task (cognitive task or rest) x Hemoglobin Type (oxygenated or deoxygenated) 

x Hemisphere (left or right) x Channel (4) x Time Course (7). 

Table A-1. P-value obtained in the Comparison 2.1 (Exp. 0) in HCI relevant interactions. 

Interaction [Hb] [HbO] [HbT] 

Cognitive Task  0.330  0.755  0.488 

Cognitive Task * Channel  0.031  0.087  0.188 

Cognitive Task * Channel * Time Course  0.308  0.103  0.099 

Cognitive Task * Hemisphere  0.300  0.534  0.402 

Cognitive Task * Hemisphere * Channel  0.543  0.747  0.753 

Cognitive Task * Hemisphere * Channel * Time Course  0.538  0.831  0.807 

Cognitive Task * Hemisphere * Time Course  0.331  0.621  0.507 

Cognitive Task * Time Course  0.292  0.544  0.420 

Cognitive Task * Hemoglobin Type    0.337 

Cognitive Task * Hemoglobin Type * Channel    0.059 

Cognitive Task * Hemoglobin Type * Channel *         
Time Course 

   0.116 

Cognitive Task * Hemoglobin Type * Hemisphere    0.800 

Cognitive Task * Hemoglobin Type * Hemisphere * 
Channel 

   0.676 

Cognitive Task * Hemoglobin Type * Hemisphere * 
Channel * Time Course 

   0.751 

Cognitive Task * Hemoglobin Type * Hemisphere *  
Time Course 

   0.712 

Cognitive Task * Hemoglobin Type * Time Course    0.297 
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Table A-2 . P-value obtained in the Comparison 1 (Experiment 1 to 4) in HCI relevant interactions. 

Interaction Clicking  Frowning Head Movements Typing 

 
[Hb] [HbO] [HbT] [Hb] [HbO] [HbT] [Hb] [HbO] [HbT] [Hb] [HbO] [HbT] 

Artifact 0.856 0.609 0.618 0.135 0.321 0.268 0.235 0.875 0.489 0.418 0.321 0.121 

Artifact * Channel 0.232 0.790 0.716 0.068 0.035 0.035 0.082 0.729 0.862 0.344 0.677 0.536 

Artifact * Channel * Time Course 0.436 0.659 0.762 0.082 0.065 0.064 0.405 0.674 0.685 0.253 0.724 0.582 

Artifact * Hemisphere 0.866 0.631 0.716 0.857 0.639 0.742 0.803 0.954 0.900 0.915 0.371 0.502 

Artifact * Hemisphere * Channel 0.841 0.128 0.215 0.371 0.474 0.538 0.073 0.233 0.116 0.689 0.918 0.814 

Artifact * Hemisphere * Channel *          
Time Course 

0.550 0.347 0.373 0.394 0.430 0.522 0.297 0.501 0.362 0.409 0.523 0.793 

Artifact * Hemisphere * Time Course 0.964 0.473 0.712 0.810 0.560 0.643 0.570 0.915 0.820 0.711 0.698 0.645 

Artifact * Time Course 0.756 0.750 0.713 0.199 0.134 0.071 0.452 0.330 0.600 0.735 0.034 0.087 

Artifact * Hemoglobin Type 
  

0.777 
  

0.408 
  

0.299 
  

0.920 

Artifact * Hemoglobin Type * Channel 
  

0.547 
  

0.046 
  

0.387 
  

0.791 

Artifact * Hemoglobin Type * Channel * 
Time Course   

0.502 
  

0.067 
  

0.493 
  

0.696 

Artifact * Hemoglobin Type * Hemisphere 
  

0.678 
  

0.491 
  

0.961 
  

0.428 

Artifact * Hemoglobin Type * Hemisphere * 
Channel   

0.137 
  

0.268 
  

0.411 
  

0.895 

Artifact * Hemoglobin Type * Hemisphere * 
Channel * Time Course   

0.476 
  

0.205 
  

0.647 
  

0.056 

Artifact * Hemoglobin Type * Hemisphere * 
Time Course   

0.307 
  

0.448 
  

0.849 
  

0.822 

Artifact * Hemoglobin Type * Time Course 
  

0.761 
  

0.284 
  

0.107 
  

0.288 
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Table A-3. P-value obtained in the Comparison 1.1 (Experiment 1 to 4) in HCI relevant interactions. 

Interaction Clicking  Frowning Head Movements Typing 

 
[Hb] [HbO] [HbT] [Hb] [HbO] [HbT] [Hb] [HbO] [HbT] [Hb] [HbO] [HbT] 

Artifact 0.947 0.908 0.972 0.642 0.498 0.515 0.471 0.987 0.649 0.385 0.688 0.300 

Artifact * Channel 0.044 0.631 0.745 0.095 0.037 0.037 0.094 0.514 0.883 0.922 0.401 0.383 

Artifact * Channel * Time Course 0.205 0.208 0.336 0.102 0.076 0.076 0.380 0.591 0.581 0.333 0.324 0.194 

Artifact * Hemisphere 0.899 0.314 0.506 0.978 0.492 0.596 0.851 0.584 0.634 0.429 0.946 0.807 

Artifact * Hemisphere * Channel 0.553 0.088 0.146 0.403 0.558 0.609 0.286 0.318 0.282 0.821 0.701 0.864 

Artifact * Hemisphere * Channel *             
Time Course 

0.702 0.345 0.487 0.427 0.490 0.566 0.600 0.485 0.454 0.752 0.574 0.729 

Artifact * Hemisphere * Time Course 0.912 0.685 0.782 0.914 0.465 0.583 0.866 0.916 0.945 0.541 0.983 0.906 

Artifact * Time Course 0.353 0.927 0.927 0.455 0.155 0.155 0.556 0.602 0.602 0.217 0.242 0.060 

Artifact * Hemoglobin Type 
  

0.873 
  

0.486 
  

0.558 
  

0.735 

Artifact * Hemoglobin Type * Channel 
  

0.273 
  

0.055 
  

0.204 
  

0.438 

Artifact * Hemoglobin Type * Channel *   
Time Course   

0.144 
  

0.080 
  

0.518 
  

0.471 

Artifact * Hemoglobin Type * Hemisphere 
  

0.126 
  

0.357 
  

0.585 
  

0.408 

Artifact * Hemoglobin Type * Hemisphere * 
Channel   

0.135 
  

0.317 
  

0.385 
  

0.591 

Artifact * Hemoglobin Type * Hemisphere * 
Channel * Time Course   

0.419 
  

0.268 
  

0.626 
  

0.543 

Artifact * Hemoglobin Type * Hemisphere * 
Time Course   

0.583 
  

0.338 
  

0.779 
  

0.597 

Artifact * Hemoglobin Type * Time Course 
  

0.317 
  

0.268 
  

0.632 
  

0.803 
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Table A-4. P-value obtained in the Comparison 1.2 (Experiment 1 to 4) in HCI relevant interactions. 

Interaction Clicking  Frowning Head Movements Typing 

 
[Hb] [HbO] [HbT] [Hb] [HbO] [HbT] [Hb] [HbO] [HbT] [Hb] [HbO] [HbT] 

Artifact 0.655 0.338 0.224 0.096 0.209 0.124 0.134 0.727 0.433 0.787 0.068 0.166 

Artifact * Channel 0.690 0.673 0.816 0.061 0.042 0.041 0.167 0.841 0.719 0.206 0.323 0.668 

Artifact * Channel * Time Course 0.671 0.291 0.451 0.094 0.074 0.069 0.568 0.222 0.260 0.366 0.273 0.311 

Artifact * Hemisphere 0.852 0.013 0.034 0.762 0.797 0.898 0.471 0.432 0.395 0.556 0.108 0.252 

Artifact * Hemisphere * Channel 0.651 0.495 0.554 0.354 0.389 0.46 0.028 0.337 0.077 0.042 0.726 0.512 

Artifact * Hemisphere * Channel *           
Time Course 

0.343 0.373 0.282 0.397 0.400 0.502 0.205 0.609 0.349 0.248 0.554 0.827 

Artifact * Hemisphere * Time Course 0.722 0.037 0.129 0.642 0.688 0.725 0.240 0.572 0.395 0.817 0.314 0.413 

Artifact * Time Course 0.498 0.131 0.534 0.461 0.204 0.163 0.066 0.08 0.483 0.154 0.052 0.192 

Artifact * Hemoglobin Type 
  

0.756 
  

0.367 
  

0.157 
  

0.341 

Artifact * Hemoglobin Type * Channel 
  

0.540 
  

0.052 
  

0.585 
  

0.115 

Artifact * Hemoglobin Type * Channel * 
Time Course   

0.229 
  

0.092 
  

0.304 
  

0.287 

Artifact * Hemoglobin Type * Hemisphere 
  

0.048 
  

0.643 
  

0.570 
  

0.191 

Artifact * Hemoglobin Type * Hemisphere * 
Channel   

0.453 
  

0.227 
  

0.374 
  

0.556 

Artifact * Hemoglobin Type * Hemisphere * 
Channel * Time Course   

0.538 
  

0.182 
  

0.640 
  

0.149 

Artifact * Hemoglobin Type * Hemisphere * 
Time Course   

0.069 
  

0.587 
  

0.798 
  

0.432 

Artifact * Hemoglobin Type * Time Course 
  

0.143 
  

0.415 
  

0.002 
  

0.012 
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Table A-5. P-value obtained in the Comparison 2 (Experiment 1 to 4) in HCI relevant interactions. 

Interaction Clicking  Frowning Head Movements Typing 

 
[Hb] [HbO] [HbT] [Hb] [HbO] [HbT] [Hb] [HbO] [HbT] [Hb] [HbO] [HbT] 

Cognitive Task 0.159 0.970 0.053 0.240 0.539 0.195 0.297 0.903 0.287 0.342 0.965 0.367 

Cognitive Task * Channel 0.144 0.097 0.102 0.102 0.138 0.456 0.068 0.110 0.178 0.052 0.110 0.228 

Cognitive Task * Channel * Time Course 0.689 0.128 0.070 0.387 0.043 0.089 0.124 0.088 0.128 0.085 0.114 0.206 

Cognitive Task * Hemisphere 0.210 0.731 0.847 0.594 0.882 0.951 0.457 0.982 0.748 0.046 0.729 0.227 

Cognitive Task * Hemisphere * Channel 0.302 0.915 0.744 0.448 0.519 0.519 0.592 0.916 0.777 0.720 0.760 0.646 

Cognitive Task * Hemisphere * Channel * 
Time Course 

0.622 0.763 0.852 0.726 0.605 0.685 0.666 0.859 0.812 0.820 0.669 0.604 

Cognitive Task * Hemisphere * Time Course 0.338 0.359 0.507 0.869 0.678 0.733 0.217 0.455 0.321 0.110 0.525 0.376 

Cognitive Task * Time Course 0.285 0.891 0.282 0.120 0.719 0.306 0.502 0.697 0.675 0.487 0.751 0.749 

Cognitive Task * Hemoglobin Type 
  

0.353 
  

0.631 
  

0.456 
  

0.420 

Cognitive Task * Hemoglobin Type * Channel 
  

0.098 
  

0.074 
  

0.088 
  

0.079 

Cognitive Task * Hemoglobin Type * Channel 
* Time Course   

0.195 
  

0.042 
  

0.080 
  

0.088 

Cognitive Task * Hemoglobin Type * 
Hemisphere   

0.383 
  

0.624 
  

0.774 
  

0.465 

Cognitive Task * Hemoglobin Type * 
Hemisphere * Channel   

0.762 
  

0.505 
  

0.974 
  

0.865 

Cognitive Task * Hemoglobin Type * 
Hemisphere * Channel * Time Course   

0.654 
  

0.497 
  

0.837 
  

0.741 

Cognitive Task * Hemoglobin Type * 
Hemisphere * Time Course   

0.215 
  

0.650 
  

0.569 
  

0.238 

Cognitive Task * Hemoglobin Type *        
Time Course   

0.507 
  

0.510 
  

0.496 
  

0.446 
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Table A-6. P-value obtained in the Comparison 2.2 (Experiment 1 to 4) in HCI relevant interactions. 

Interaction Clicking  Frowning Head Movements Typing 

 
[Hb] [HbO] [HbT] [Hb] [HbO] [HbT] [Hb] [HbO] [HbT] [Hb] [HbO] [HbT] 

Cognitive Task 0.160 0.765 0.082 0.290 0.443 0.268 0.354 0.944 0.373 0.532 0.394 0.399 

Cognitive Task * Channel 0.695 0.220 0.160 0.249 0.354 0.744 0.316 0.185 0.306 0.503 0.361 0.485 

Cognitive Task * Channel * Time Course 0.497 0.200 0.153 0.533 0.158 0.348 0.081 0.094 0.344 0.157 0.307 0.285 

Cognitive Task * Hemisphere 0.189 0.089 0.288 0.954 0.499 0.667 0.930 0.314 0.499 0.047 0.599 0.180 

Cognitive Task * Hemisphere * Channel 0.218 0.460 0.191 0.611 0.286 0.326 0.357 0.713 0.826 0.402 0.625 0.387 

Cognitive Task * Hemisphere * Channel * 
Time Course 

0.612 0.356 0.354 0.689 0.543 0.625 0.705 0.730 0.784 0.731 0.461 0.478 

Cognitive Task * Hemisphere * Time Course 0.667 0.060 0.189 0.819 0.639 0.732 0.372 0.318 0.238 0.154 0.506 0.589 

Cognitive Task * Time Course 0.155 0.657 0.384 0.269 0.669 0.462 0.725 0.946 0.828 0.155 0.598 0.204 

Cognitive Task * Hemoglobin Type 
  

0.464 
  

0.898 
  

0.652 
  

0.789 

Cognitive Task * Hemoglobin Type * Channel 
  

0.286 
  

0.154 
  

0.166 
  

0.380 

Cognitive Task * Hemoglobin Type * Channel 
* Time Course   

0.281 
  

0.058 
  

0.048 
  

0.236 

Cognitive Task * Hemoglobin Type * 
Hemisphere   

0.047 
  

0.240 
  

0.351 
  

0.088 

Cognitive Task * Hemoglobin Type * 
Hemisphere * Channel   

0.838 
  

0.288 
  

0.353 
  

0.740 

Cognitive Task * Hemoglobin Type * 
Hemisphere * Channel * Time Course   

0.433 
  

0.443 
  

0.676 
  

0.568 

Cognitive Task * Hemoglobin Type * 
Hemisphere * Time Course   

0.036 
  

0.515 
  

0.517 
  

0.127 

Cognitive Task * Hemoglobin Type *        
Time Course   

0.233 
  

0.901 
  

0.775 
  

0.630 



Appendix A: Expanded Statistical Analysis Results 

171 

A.2. Chapter 5 - Distinguishing Difficulty Levels 

The following tests were designed for the Pacman experiment.  

Table A-7. P-value obtained in HCI relevant P-value performed in Chapter 5. 

Interaction p-value 

Difficulty Level 0.088 

Difficulty Level * Channel 0.062 

Difficulty Level * Channel * Hemoglobin Type 0.633 

Difficulty Level * Hemisphere 0.255 

Difficulty Level * Hemisphere * Channel 0.913 

Difficulty Level * Hemisphere * Channel * Hemoglobin Type 0.302 

Difficulty Level * Hemisphere * Hemoglobin Type 0.766 

Difficulty Level * Hemoglobin Type 0.375 

Activeness 0.798 

Activeness * Channel 0.001 

Activeness * Channel * Hemoglobin Type 0.048 

Activeness * Difficulty Level 0.764 

Activeness * Difficulty Level * Channel 0.294 

Activeness * Difficulty Level * Channel * Hemoglobin Type 0.024 

Activeness * Difficulty Level * Hemisphere 0.417 

Activeness * Difficulty Level * Hemisphere * Channel 0.491 

Activeness * Difficulty Level * Hemisphere * Channel * Hemoglobin Type 0.836 

Activeness * Difficulty Level * Hemisphere * Hemoglobin Type 0.366 

Activeness * Difficulty Level * Hemoglobin Type 0.866 

Activeness * Hemisphere 0.333 

Activeness * Hemisphere * Channel 0.266 

Activeness * Hemisphere * Channel * Hemoglobin Type 0.358 

Activeness * Hemisphere * ex 0.385 

Activeness * Hemisphere * Hemoglobin Type 0.106 

Activeness * Hemoglobin Type 0.235 
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Appendix B:  

Detailed Classification Results 

presented in Chapter 4 

Table B-1 displays the accuracy obtained per subjects for different condition 

combinations. 
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Table B-1. Average accuracy per subjects. 

Conditions Combinations S1 S2 S3 S4 S5 
Average 
Accuracy 

WL0 - WL3p  75.4% 39.6% 87.2% 90.2% 90.7% 76.6% 

WL3 - WL3p  90.5% 44.6% 73.9% 89.2% 77.8% 75.2% 

WL0 - WL2  39.2% 51.1% 72.7% 74.1% 43.3% 56.1% 

WL0 - WL3  51.7% 44.5% 82.0% 76.4% 53.6% 61.7% 

WL0 - WL4  74.1% 61.1% 73.1% 90.4% 57.2% 71.2% 

WL2 - WL3  69.5% 50.2% 56.1% 50.1% 53.8% 55.9% 

WL2 - WL4  68.8% 68.9% 60.1% 70.0% 49.1% 63.4% 

WL3 - WL4  60.0% 70.5% 62.1% 51.6% 37.9% 56.4% 

WL0 - WL2 - WL3  36.4% 39.2% 45.2% 51.4% 31.0% 40.6% 

WL0 - WL2 - WL4  50.5% 67.4% 66.2% 69.7% 41.2% 59.0% 

WL0 - WL3 - WL4  52.1% 43.5% 58.6% 53.6% 35.1% 48.6% 

WL2 - WL3 - WL4 52.7% 35.1% 40.7% 38.7% 33.1% 40.1% 

WL0 - WL2 - WL3 - WL4  37.1% 38.6% 30.2% 45.8% 22.5% 34.8% 

all  33.0% 20.4% 36.6% 49.8% 32.1% 34.4% 
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Appendix C:  

Self-Report Survey 

How would you rate the game of Tetris compared to the average level of games you 
usually play?  

 
1 2 3 4 5 6 7 8 9 10 

 

Easiest           Hardest 

 
How many lines do you think you completed, on average in the condition WITHOUT 
music?  

0 0.5 1 1.5 2 2.5 3 or more 

 
How many lines do you think you completed, on average in the condition WITH music?  

0 0.5 1 1.5 2 2.5 3 or more 
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How satisfied are you with your performance at Tetris?  

 
1 2 3 4 5 

 

Not satisfied      Very satisfied 

 
What was your strategy when playing Tetris?  [Long answer]  
 
Did that strategy change when the music was playing? [Long answer] 
 
Did you think about something specific while you were watching the videos? Please 
describe.  [Long answer]  
 
Did you have any emotional reaction to some of the videos? If so, please describe the 
reaction for each video. [Long answer] 
 
Did you notice music playing when you were performing the tasks (playing Tetris or 
watching a video)?  [Yes/no] 
 
Once the word music appeared on the screen, how often did you pay attention to the 
music?  

Never Sometimes  Always 

Was there something that made you pay attention to the music? Please describe.  [Long 
answer] 
 
What can you tell us about the music? Please be as detailed as possible. [Long answer]  
 
Did you perceive changes in the music, or was the same song playing in a loop? Please 
describe.  [Long answer] 
 
How did the music make you feel? Please describe. [Long answer] 
 
Did you find the music to be on a regular pattern? Please describe. [Long answer] 
 
If you noticed changes, were they associated with a particular task? Please describe. 
[Long answer] 
 
Did the music help, hinder, or had no effect on your performance?  

Help No effect Hinder 

 
Did it help, hinder, or had no effect on your performance? -- Please describe. [Long 
answer] 
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How much did the music help your performance?  

 
1 2 3 4 5 

 

Didn't help at all      Helped a lot 

 
How much did the music disrupt your performance?  

 
1 2 3 4 5 

 

Didn't disrupt at all      Disrupted a lot 

 
Did you like the music played?  

 
1 2 3 4 5 

 

Disliked a lot      Liked a lot 

 
For how long would you continue doing this last set of tasks WITHOUT music playing?  

 
1 2 3 4 5 

 

Not one more minute      A long time 

 
For how long would you continue doing this last set of tasks WITH music playing?  

 
1 2 3 4 5 

 

Not one more minute      A long time 
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