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ABSTRACT 
A well designed user interface (UI) should be transparent, 
allowing users to focus their mental workload on the task at 
hand.  We hypothesize that the overall mental workload 
required to perform a task using a computer system is 
composed of a portion attributable to the difficulty of the 
underlying task plus a portion attributable to the 
complexity of operating the user interface. In this regard, 
we follow Shneiderman's theory of syntactic and semantic 
components of a UI. We present an experiment protocol 
that can be used to measure the workload experienced by 
users in their various cognitive resources while working 
with a computer. We then describe an experiment where we 
used the protocol to quantify the syntactic workload of two 
user interfaces. We use functional near infrared 
spectroscopy, a new brain imaging technology that is 
beginning to be used in HCI. We also discuss extensions of 
our techniques to adaptive interfaces. 

ACM Classification Keywords: H5.2 [Information 
interfaces and presentation]: User Interfaces. - Graphical 
user interfaces. 

Author Keywords: evaluation, syntactic, BCI, workload 

INTRODUCTION 
A well designed computer interface should be nearly 
transparent, allowing the user to focus on the task at hand 
[20]. This is a common goal for experts in Human 
Computer Interaction (HCI) who conduct research on 
designing and evaluating user interfaces (UIs). It is well 
known that effectively designing and evaluating UIs 
enhances user performance, increases user satisfaction, and 

increases safety [23].  Therefore, determining the most 
effective techniques for evaluating UIs remains a popular 
area of research.  

Measurements of accuracy and time to complete a task are 
common quantitative measures used in UI evaluation.  
However, measuring user states such as mental workload is 
done by qualitatively observing subjects or administering 
subjective surveys to subjects. These surveys are often 
given after a task has been completed, lacking insight into 
the user’s changing experiences during the task.  Our 
research addresses these evaluation challenges with respect 
to mental workload. We use a new, non-invasive brain 
sensing technique called functional near infrared 
spectroscopy (fNIRs) to make real time, objective 
measurements of users’ mental workload while working 
with UIs. fNIRs was introduced in the 1990s [3, 7] to 
complement, and in some cases overcome, practical and 
functional limitations of EEG and other brain devices.  

Brain measurement in HCI has typically been used to 
investigate overall system difficulty where the UI and task 
are viewed as one entity [10, 15, 22].  However, UI 
designers generally want to minimize the workload 
required to work with UI, allowing the user to focus more 
workload on the primary task.  Therefore, a high workload 
detected while a user works with a system is not 
necessarily a bad thing; it could indicate that the user is 
immersed in the task. How can UI evaluators know if a 
high workload measurement is due to the UI or to the task?  

Also, most research measuring mental workload in HCI 
involves the creation of controlled tasks where workload is 
manipulated as an independent variable throughout the 
experiment [10, 15, 22].  For example, researchers in the 
Augmented Cognition program developed the GUI based 
Warship Commander Task (WCT) [11]. In this mock 
command and control environment, subjects made actions 
based on planes flying through their airspace during a 75 
second time period. Workload was manipulated by 
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changing the number of planes that required attention in the 
airspace during that time [11]. Figure 1 shows two 
workload conditions in the WCT. Researchers looked at the 
brain activity of subjects to determine if the increased 
workload (number of planes) caused different brain 
activity, as measured by various brain imaging devices. 

 
Figure 1: Two workload conditions from the WCT [11], with 
lower workload on the left.  The UI and task are seen as one 

entity, and workload is determined as an independent variable 

 
This setup is similar to many experiments on workload in 
HCI where the UI and task are seen as one entity and 
known levels of workload are used as independent 
variables in the experiment.  How can we gain measures of 
users’ workload while working with UIs in real world 
settings, when the workload associated with the UI is not 
determined beforehand? Also, UIs and tasks that have been 
created outside of lab settings will cause complex brain 
activity in the brain’s cognitive resources. Thus, it will be 
difficult to gain measures of users’ workload, and even 
more difficult to attribute workload to aspects of the UI.  

To address these issues and move toward the goal of 
evaluating UIs with brain measurement, we propose to 
separate mental workload into multiple components. We 
hypothesize that the overall workload required to perform a 
task using a computer is composed of a portion attributable 
to the difficulty of the task itself plus a portion attributable 
to the complexity of operating the UI. In this regard, we 
follow Shneiderman's theory of syntactic and semantic 
components of a UI [20]. The semantic component 
involves the workload needed to complete the task. The 
syntactic component includes interpreting the UI’s 
feedback and formulating and inputting commands to the 
UI. A goal in UI design is to reduce the mental effort 
devoted to the syntactic aspects so that more workload can 
be devoted to the underlying task, or semantic aspects. 

We believe that brain measurement can be used as an 
additional metric in usability studies (and in adaptive UIs) 
to acquire real time, objective measurements that shed light 
on the syntactic workload associated with UIs.  The brain is 
a complex structure, making it nearly impossible to 
completely separate resources devoted to processing the 
semantic (task) and syntactic (UI) elements of workload. 
However, we posit that brain measurement can be used to 

acquire valuable information about the syntactic workload 
of a UI. We focus on the interacting cognitive subsystems, 
or cognitive resources, that work together to process 
information (i.e., working memory, executive processing, 
visual search) while a user works with a UI and task.  

As an initial step in this direction, we designed an 
experiment to measure the syntactic workload of two 
specially constructed UIs that involve users traversing 
through hyperspace while conducting an information 
retrieval task. These two UIs, described in detail later, are 
based on benchmark cognitive psychology tasks that place 
demands on users’ spatial working memory (WM). We do 
not separate "semantic" and "syntactic" workload in the 
brain directly, but rather we constructed our UI and task so 
that the syntactic portion maps directly onto spatial WM, 
and the semantic portion maps onto verbal WM. We 
developed a novel experimental protocol that merges low 
level cognition experiments with high level usability 
evaluation. We used our protocol to acquire fNIRs brain 
measurements, and we created a set of data analysis 
algorithms that enable us to make inferences about the 
syntactic workload (i.e., spatial WM) of each interface.  

Therefore, this work provides two primary contributions to 
the HCI realm. First, our novel experiment protocol and our 
data analysis algorithms can help usability experts, or 
designers of adaptive systems, to gain information about 
the workload experienced by computer users in the various 
cognitive resources in their brain while working with a 
computer system. As opposed to most brain measurement 
in HCI, our work demonstrates ways that workload can be 
measured in real working conditions, when the workload of 
operating a computer system is not known beforehand. 
Second, we designed two simplified UIs and a task, and we 
ran an experiment using our protocol where we acquired 
quantitative, real time measurements of the syntactic 
workload (i.e.,spatial WM) of our specially constructed 
UIs. The experiment ties Shneiderman’s theory on syntactic 
and semantic workload to quantifiable brain measurements.  

The rest of this paper proceeds as follows: First, we 
describe related work. Then we give an overview of our 
experimental protocol and we present our experiment 
designed to measure the syntactic workload of our UIs. We 
then describe the algorithms developed to analyze the brain 
data. After presenting the experiment results we discuss 
implications of our findings and future work in this area. 

RELATED WORK 
Our interdisciplinary research builds on work in biomedical 
engineering, cognitive psychology, HCI, and data mining.  

Brain Imaging 
Brain imaging techniques such as functional magnetic 
resonance imaging (fMRI) and positron emission 
tomography (PET) have been widely used to learn about 
human brain activity.  Although these techniques provide 
valuable insight into the brain, they require motionless 
subjects in constricted positions (fMRI), and they expose 
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subjects to hazardous materials (PET) or loud noises 
(fMRI) [10].  These techniques are not suitable for 
measuring the brain in normal working conditions. 

For this reason, the electroencephalograph (EEG) has been 
of interest to researchers looking to non-invasively measure 
users’ brain activity [8, 13, 15, 17].  EEG is the most 
studied non-invasive brain imaging device due to its fine 
temporal resolution, ease of use, and low cost.  While EEG 
is less invasive than other techniques, it is susceptible to 
noise since fluid, bone, and scalp separate the electrodes 
from brain activity.  EEG also takes longer to set-up than 
fNIRs, has low spatial resolution, and is very sensitive to 
subject movement and electrical interference [15].   

Functional Near Infrared Spectroscopy 
We use fNIRs to add increased comfort and portability to 
subjects and to overcome some of the practical and 
functional limitations of EEG [10].  The tool, still a 
research modality, uses light sources in the near infrared 
wavelength range (650-850 nm) and optical detectors to 
probe brain activity. Light sources and detection points are 
defined by means of optical fibers which are held on the 
scalp with an optical probe (Figure 2). Deoxygenated and 
oxygenated hemoglobin are the main absorbers of near 
infrared light in tissues during hemodynamic and metabolic 
changes associated with neural activity in the brain [3]. We 
can detect these changes by measuring the diffusively 
reflected light that has probed the brain cortex [3, 10, 22].  
Researchers have shown that by placing the probes on a 
subject’s forehead, fNIRs provides an accurate measure of 
activity within the frontal lobe of the brain [10].  The 
frontal lobe has been found to play a part in memory and 
executive control.  These results are promising when 
combined with the fact that fNIRs is safe, portable, less 
invasive than other imaging techniques, and has been 
implemented wirelessly, allowing for use in real world 
environments [10, 18]. 

 
Figure 2: two probes and their sources and detectors. 

Mental Workload 
The term  workload is used in literature from various fields 
and its definition varies widely[9, 21, 23]. In this section, 
we discuss workload in cognition, HCI, fNIRs research.   

Workload in Cognitive Psychology Literature 
Many studies in experimental psychology are based on 
Baddeley’s model of WM [1, 21]. The original model 
posits that there are two separate storage spaces for short 
term memory, which provides volatile, short term 
maintenance of data. The visuo-spatial sketchpad holds 
visual and spatial information in short term memory and 
the phonological loop holds verbal storage (like 
remembering someone’s phone number by rehearsing the 

number in one’s mind). These storage spaces are often 
referred to as the slave systems for the central executive.  
While the phonological loop and the visuo-spatial 
sketchpad are the basis for much experimental research, the 
central executive has proved much more difficult to 
empirically validate [1, 21].  From this point on, we use the 
term spatial WM to refer to the visuo-spatial sketchpad and 
verbal WM to refer to the phonological loop. 

Much research suggests that verbal and spatial WM tasks 
involve different signatures of brain activation [6, 16, 21], 
supporting the theory that these storage systems are 
separate in the brain.  For example, Gevins [6] used EEG to 
differentiate between four levels of brain activation: low 
verbal WM, high verbal WM, low spatial WM, and high 
spatial WM. A variety of experimental tasks have been 
created to study the differentiation of the slave systems. 
These tasks often manipulate which slave system is used 
and the level of memory load placed on the slave system 
(varying the number of items to store in WM, or the 
number of updates made to WM in a given time). For a 
review of verbal and spatial WM see [21]  and [1] .  

Leung and her colleagues [16] provide another set of WM 
tasks which increase the number of updates made to spatial 
WM in a given set of time. These tasks will play an 
important role in the experiment presented next. As shown 
in the first row of Fig. 3, the subject views screens in order 
(from left to right). After viewing a grid for a set of time, a 
dot is introduced in a random location in the grid. Next, a 
set of twelve screens (abbreviated in Fig. 3 with 4 screens) 
direct the subject to either keep the spatial location of the 
dot stored in WM (denoted with a ‘-‘ on the screen), or to 
update the location of the dot in WM based on the direction 
of the arrow (←,↑,→, or ↓).  At the end of the task, the 
subject views a screen with a dot in a particular location, 
and (s)he indicates if the dot is in the correct location. 
Using this experiment setup, Leung used MRI to show that 
activation in the brain increased linearly as the number of 
updates in spatial WM increased [16].  

 
Figure 3: Leung’s tasks, spatial WM is increased as we move 

from the top to the bottom task. 

Workload in HCI Literature 
HCI experts consider the various mental processes that 
make up workload when designing or evaluating an 
interface. For example, Boechler discussed the spatial 
cognition that is needed to navigate through web 
hierarchies. She urged web designers to understand the 
demands that spatial orientation places on web users, and 
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she described the cognitive overload that occurs when a 
user “feels lost” while searching in hyperspace [2].  

Larson and Czerwinski [14] looked at the connections 
between WM and the structure of multiple hyperlinks on 
web pages for information retrieval tasks. They tied their 
results into the memory and visual scanning ability of each 
subject, as assessed by tasks from the Kit of Factor 
Referenced Cognitive Tests [5]. In a later book chapter, 
Czerwinski and Larson [4] discussed the need to combine 
knowledge of “sensation, perception, attention, memory, 
and decision making[4]” from the cognition literature with 
experiments evaluating UIs. They noted that this is not an 
easy task, as most cognitive research focuses on low level 
tasks, with a small cognitive load. The jump from low level 
cognitive tasks to tasks in usability evaluation is large. 
They discuss bridging the gap between cognition 
experiments and UI evaluation [4]. The research presented 
in this paper is a step toward Czerwinski and Larson’s goal.  

Workload and fNIRs 
Leung (Fig. 3) used fMRI to conclude that brain activity 
increased linearly as the number of updates to spatial WM 
increased [16]. This is in line with Parasuraman and 
Caggiano’s [18] discussion on the neural activation of 
mental workload.  They reviewed brain imaging research 
on workload, and found that WM and executive 
functioning tasks activate areas in the prefrontal cortex, and 
the amount of activation increases as a function of the 
number of items held in WM. The presence of workload 
activation and the relative load (of holding n items in WM 
or of making n updates to WM) can be quantified using 
PET, fMRI, fNIRs, and transcranial Doppler 
ultrasonography (TCD) [18].  This is promising, as fNIRs 
rates well when compared to the other brain imaging 
devices based on its functionality and practicality [11, 18].   

NOVEL EXPERIMENTAL PROTOCOL 
We designed a protocol to shed light on the workload 
experienced by users’ various cognitive resources while 
working with a computer. We designed the protocol to aid 
usability experts to measure workload as a dependant 
variable while a user works with a UI and/or task. First we 
present the protocol in its most general form. Then we 
present our experiment and show how we used the protocol 
to measure the syntactic workload of our two simple UIs.   

The general protocol is as follows: Given a UI to evaluate 
and an underlying task, we conduct a task analysis on the 
UI and task.  For each subtask, we determine the cognitive 
subsystems that one would use while conducting the 
subtasks (i.e., spatial WM, visual search, etc.). Next we 
gather benchmark exercises from cognitive psychology 
designed to elicit high and low levels of workload on the 
target cognitive resource(s) associated with our UI.  

Next, we run an experiment where users complete the 
benchmark cognition exercises, giving us a measure of 
their brain activity while they experience high and low 
workload levels in their various cognitive subsystems. 

Users also work with the UI that we are attempting to 
evaluate.  Lastly, we use fNIRs data analysis tools to find 
similarities and differences in the users’ brain activity while 
working with the UI to be evaluated and while completing 
the cognitive psychology exercises. While the protocol, in 
its most general form, will not yield exact measures of 
syntactic workload for any given UI, usability experts can 
incorporate the protocol into their studies and use the 
knowledge gained as an added usability metric. For 
example, web page designers using this protocol in a 
usability study might find that their users were visually 
overloaded while searching for items on a web page. They 
could determine this by finding that the users’ brain activity 
while working on that particular web page was similar to 
the users’ brain activity while conducting a cognition 
exercise designed to cause high visual search workload. In 
this case, the designers could re-design the page to place 
less demand on users’ visual search resources.  

In the future, one could imagine a training period, where 
users work with a set of benchmark cognitive psychology 
exercises designed to target particular cognitive resources 
(i.e., verbal WM, spatial WM, visual scanning, auditory 
processing). After determining the patterns of brain activity 
induced by the various benchmark exercises, users could 
work with a computer system and usability experts could 
search for similarities between the users’ brain activity 
while working with the computer system, and the brain 
activity already established during the training period.   

EXPERIMENT: UNCOVERING SYNTACTIC WORKLOAD 
We designed an experiment to shed light on the syntactic 
(interface) components of workload. We created two 
interfaces to evaluate which were based on Leung’s 
cognitive psychology tasks. Our interfaces allow users to 
traverse through hyperspace, which has been shown to 
involve spatial WM [2]. We chose a simple information 
retrieval (IR) underlying task that primarily uses verbal 
WM. We kept the underlying task difficulty level constant 
throughout all experimental conditions. We designed our 
UIs to map directly to users’ spatial WM and our task to 
map directly to users’ verbal WM. In this specially 
constructed scenario, if we could measure different levels 
of users’ spatial WM demands while working with the UIs, 
we could acquire information about the syntactic workload 
of each UI. When a user worked with these UIs and 
simplified task, we say (s)he completed interface exercises.  

We used our novel protocol and we conducted a task 
analysis on each hyperspace UI and IR task. We chose two 
exercises from cognitive psychology experiments that 
involve both spatial WM and verbal WM.  Both of these 
exercises had low verbal WM demands (mirroring the IR 
task).  However, one of these exercises had high spatial 
WM, and the other involved low spatial WM. When a user 
worked with our low level cognitive psychology tasks we 
say (s)he completed cognition exercises. We used fNIRs to 
record brain activity while subjects worked with our 
interface exercises and with our cognition exercises. By 
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using benchmark exercises from the cognition literature 
with more realistic UIs and tasks, we attempted to bridge 
the gap between cognition experiments and UI evaluation.  

Experiment Research Questions 
We ran a pilot study and measured two subjects’ brain 
activity while they completed four benchmark cognitive 
psychology tasks that induced only low spatial, only high 
spatial, only low verbal, and only high verbal WM 
demands. We were able to distinguish between these four 
conditions, and results were in line with cognition 
literature; that verbal WM and spatial WM use different 
resources in the brain, and we can measure high and low 
levels of workload in these different resources with fNIRs. 

Pilot results indicated that we could, indeed, measure the 
different brain activity associated with spatial and verbal 
WM. Next, we aimed to tackle our primary research 
question: to determine whether or not we could use our 
experiment protocol and analysis algorithms to measure the 
syntactic workload of our two UIs. However, acquiring a 
reliable signal and measuring workload with fNIRs remains 
challenging. Therefore, we had two preliminary questions 
to address in order to reach our primary goal of measuring 
the syntactic workload of our UIs.  

1) Preliminary Question 1: Can we use fNIRs to 
differentiate brain activity associated with each of our 
experimental conditions from brain activity at rest?  

2) Preliminary Question 2: Can we use fNIRs to 
distinguish between no, low, and high demands on 
spatial WM? 

3) Primary Question: Can we use well established 
exercises from the cognitive psychology literature on 
spatial WM to shed light on the syntactic workload 
involved in our higher level user interface exercises? 

We hypothesize that we can answer ‘yes’ to all three 
research questions, which build on one another. In order to 
shed light on the syntactic workload involved in our high 
level interface exercises (question 3), we must distinguish 
between no, low, and high demands on spatial WM 
resources with fNIRs (question 2), and to do this, we must 
ensure that our fNIRs device can detect a brain signal 
induced by our conditions (question 1). 

Experiment Description 
We used a randomized block design and we randomly 
presented each of our conditions in nine trials throughout 
the experiment. The experiment had five conditions:  
1) Cognition exercises that have been shown to cause low 

spatial WM load and low verbal WM load  
2) Cognition exercises  that have been shown to cause 

high spatial WM load and low verbal WM load 
3) Interface exercises that show users their location in 

hyperspace while they search for verbal content.  We 
hypothesize that this design will cause low spatial WM 
load  

4) Interface exercises that do not show users their 
location in hyperspace while they search for verbal 

content. We hypothesize that this design will cause 
high spatial WM load 

5) Controlled rest exercises  
The first two conditions are depicted in Figure 4.  
 

 

Figure 4: a) Low spatial WM cognitive psychology exercise: 
recall digits and location b) High spatial WM cognitive 

psychology exercise: use arrows to update location of digits 

The cognitive psychology tasks described previously by 
Leung [16] provide the basis for these exercises.  During 
the first condition (Fig. 4a), subjects viewed a screen for 3 
seconds which had a five digit number displayed in a 
spatial position in the grid. The grid had a circular fixation 
point in the center, on which the subjects were to keep their 
eyes focused. Fixation points are used to minimize eye 
movement and to maintain the onscreen stimuli position in 
memory.  Subjects were instructed to recall the number and 
position of the cell that the number was located in. They 
kept the number (verbal) and position (spatial) in WM for 
18 seconds, until prompted by the third screen to write 
down the numbers and position on a blank answer sheet.     

In the second condition, participants saw a screen with a 
fixation point (Fig 4b). As in the first condition, subjects 
viewed a screen for 3 seconds with a 5 digit number located 
at a random spatial location in a grid. Next, they saw a 
screen for 2 seconds depicting an arrow (←,↑,→, or ↓) 
followed by a screen with just a fixation point for one 
second and they had to update the spatial location of the 
numbers based on the direction of the arrow. During this 
time they kept the number in their verbal WM and the 
current spatial position in spatial WM.   

Variants of these two slides (an arrow followed by a 
fixation point) were repeated 5 more times, as indicated in 
the figure. For each of these exercises, there were six 
arrows (requiring WM updates) throughout the 21 second 
exercise span. As Leung showed previously, the second 
condition (Fig. 4b) requires more spatial WM updates than 
condition 1, and is associated with a higher level of spatial 
WM load. We refer to these conditions as the low spatial 
and the high spatial conditions.  
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The third and fourth conditions (Fig. 5) were placed into a 
more realistic, UI setting. These two conditions represent 
our interface exercises.  We will attempt to measure the 
syntactic workload of each UI variation.  A web hierarchy 
consisting of 36 web pages was created for each condition.  
Each web page had an image at the top of the page with a 
picture of the hyperspace. There was a five digit number on 
the bottom of each web page.  

In condition 3 (Fig. 5a), referred to as the display location 
condition, subjects were randomly directed to a page in the 
hyperspace, and their position in the space was displayed 
for them. They were instructed to conduct a simple IR task; 
to remember a five-digit zip code (verbal WM) while 
searching through hyperspace for a matching zip code. 
Subjects used the arrows at the bottom of the web page to 
navigate. To ensure that subjects used similar WM  
processes in a similar span of time as the first two 
conditions, the hyperlink arrows were not active for the 
first three seconds after each web page was displayed.  

 

Figure 5: In the interface exercises, participants had to 
traverse hyperspace to find matching zip code, and remember 
their current location in hyperspace at all times.  There were 

two conditions:  a) Display location UI b) No location UI.  

Arrows were initially light blue, depicting inactive links, 
and after three seconds passed, they became dark blue, 
indicating their active nature. As subjects traversed through 
the web space, the pictorial representation of the 
hyperspace displayed their current location at all times. 
While the zip code numbers on each page were randomly 
chosen, each exercise was set up so that a subject would not 
find a match until he or she reached an exercise length 
equal to the length of the cognition exercises.   When they 
found a zip code match, subjects wrote down the zip code 
and its spatial location on an answer sheet.   

Figure 5b depicts the fourth condition, which we refer to as 
the no location condition. The setup was the same as the 
third condition, except for one crucial change. When 
subjects were randomly directed to their starting webpage, 
they were shown their spatial location within the web 

hierarchy for one second (as shown in the first screen shot), 
and then their spatial location disappeared (second screen 
shot). The subjects had to navigate the web space to find a 
zip code match, and the arrow hyperlinks behaved the same 
as they did in the third condition, but the picture of the 
hyperspace on each page gave no information about the 
current page location.  As subjects searched the hyperspace, 
they had to update their location in spatial WM while 
reciting the target zip code in verbal WM. When they found 
a zip code match, subjects wrote down the zip code and the 
location that they found the match at in the hyperspace.  

In the fifth condition, subjects rested for 18 seconds. 

Experiment Setup 
Ten subjects completed the experiment. Six subjects were 
women and nine were college students ranging in age from 
19 to 23 years old. One subject was a lecturer, aged 42 
years.  Nine of the subjects were right handed. There were 
nine trials in the experiment. Each trial consisted of each of 
the five conditions presented in random order. After writing 
down their answers, subjects rested for an additional 20 
seconds to allow their brains to return to baseline. Subjects 
were asked to keep movement to a minimum and to keep 
their hands on the mouse during all conditions. 

When describing our experiment data from this point on we 
use the term task to refer to an 18 second period of time 
that a subject was working with one of the five conditions 
described previously. We refer to a trial as one block of 
five tasks, where each condition was randomly presented 
once to the subject. Therefore, for each subject, there were 
five conditions tested and nine trials, resulting in 45 tasks.  

fNIRs Equipment and Data Analysis 
The fNIRs device is an ISS OxyplexTS frequency-domain 
tissue spectrometer with two probes. Each probe has a 
detector and four light sources. Each light source produces 
near infrared light at two wavelengths (690nm and 830nm) 
which are pulsed intermittently in time.  This results in 2 
probes x 4 light sources x 2 wavelengths = 16 light 
readings at each time point.  

To analyze the data, we implemented several analysis 
algorithms that helped us make connections between the 
conditions in our experiment. With these algorithms, we 
found similarities and differences between our interface 
exercises and the cognition exercises that place high or low 
workload demands on subjects’ cognitive resources.  

Data Preprocessing 
Each experiment lasted about 45 minutes, with data 
recorded every .16 seconds, resulting in approximately 
16,875 data readings recorded throughout the experiment. 
Since we record 16 channel readings at each timepoint, our 
raw data is approximately 16,875 rows x 16 columns, and 
each column represents the readings of one source detector 
pair at one wavelength, which we refer to as one channel.  

As brain activity differs widely on a person to person basis, 
we run all analyses separately for each subject. We first 
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normalize the intensity data in each channel by their own 
baseline values. We then apply a moving average band pass 
filter to each channel and we use the modified Beer-
Lambert Law [3, 10] to convert our light intensity data to 
measures of the change in oxygenated hemoglobin (HbO) 
and deoxygenated hemoglobin (Hb) in the brain. Therefore, 
we have a recording of HbO at four depths on the left side 
(labeled L1, L2, L3, L4) and four depths on the right side 
of the brain (R1, R2, R3, R4).  We have the same 
recordings of Hb data. We discard the data in the L1 and 
R1 channels.  These channels pick up the shallowest level 
of activity, which consists mostly of physiological noise 
from the forehead (sweat, movement, etc.) [25]. We also 
shift each of our tasks so that the ∆HbO and ∆Hb data 
begins at 0. We now have six time series depicting the 
∆HbO and six time series depicting the  ∆Hb in the brain 
activity throughout the experiment. Figure 6 shows ∆HbO 
on the left and right side of the brain during one task of 18 
seconds for subject 4. In this task, the subject was 
completing the display location interface exercise. Next we 
discard the rest time between tasks (including time when 
subjects recorded answers). Lastly, we cut off two seconds 
of data from the start of each task, as blood in the brain 
takes a few seconds to reach its area of activation. Since 
some of the interface exercises lasted longer than other 
conditions, we truncate each task to the length of the 
shortest task. This results in each task lasting ~18 seconds. 

Folding Average Analysis: ANOVA 
We use Analysis of Variance (ANOVA) to determine 
whether or not our experimental conditions cause different 
patterns of brain activation. We follow the same process 
used by Izzetoglu [10] to compare various levels of mental 
workload encountered while users worked with a mock 
command and control center application by looking only at 
HbO data [11].  For each like condition we conduct folding 
averages across all trials to remove noise from the data and 
to acquire a template of the average HbO recorded for each 
subject during that condition.  This results in one prototype 
of each condition for our six HbO channels. We then 
average together the HbO channels on the left side of the 
brain by averaging together L2, L3, and L4 at each of their 
time  t =1, t=2… t=n, where n equals the last time point in 
the ~18 second long condition. We do the same for the 
right side of the brain. For each condition, we have two 
time series representing the activity on the left and on the 
right side of the brain. We use ANOVA with a confidence 
level of 95%, to determine whether or not each condition 
elicits different brain activity than the other conditions.  

Folding Average Analysis: Clustering 
We also implemented a hierarchical clustering algorithm to 
draw similarities between our various conditions. In 
particular, we use this algorithm to find similarities 
between the known cognition exercises and our interface 
exercises in order to gain information about the syntactic 
workload of each UI. When clustering fNIRs data, we must 
be mindful that irrelevant data can be detrimental to the 
performance of the clustering algorithm [24]. If, for 

example, a condition induces no activation on the left side 
of the brain, time series from that side of the brain are 
irrelevant. We also note differences in the use of HbO and 
Hb data in existing fNIRs research. Some use HbO data 
only [10] while others use both Hb and HbO data [18, 22] 
for analysis. There are also cases when the Hb is the most 
relevant [19]. Therefore, we select the most relevant 
channels before clustering. We randomly choose one trial 
to remove from the nine available trials. We run an 
ANOVA comparing the statistical difference between these 
five conditions on HbO channels L2, L3, and L4 and 
R2,R3,R4. We do the same for the Hb data. For each 
subject, we choose the two HbO or Hb channels that result 
in the best F-statistic differentiating between the conditions.  

 
Figure 6: ∆HbO in subject 4’s brain while completing one 18 
second long display location UI exercise. L2, corresponds to 

the left side of the head, channel 2 on the fNIRs device. 

Once we’ve determined the most relevant channels we 
conduct a folding average of each condition over the eight 
remaining trials for our two channels. This gives us a 
prototype of each of our five conditions for our two best 
channels. We concatenate the time series for these two 
channels together, and we run hierarchical clustering, with 
an unweighted average Euclidian distance similarity metric.  

RESULTS AND ANALYSIS  
We discuss our results within the context of each of our 
research questions. In this section we use abbreviations for 
our low spatial (LS), high spatial (HS), display location 
(DL), no location (NL) and no workload (0WL) conditions. 

1) Preliminary Question 1: Can we use fNIRs to 
differentiate brain activity associated with each of our 
experimental conditions from brain activity at rest?  

To answer the first question, we look for a difference in 
subjects’ brain activity while resting and while completing 
each of our experiment conditions. We run ANOVAs 
comparing the brain activity of each of our cognitive 
psychology and UI conditions with our no workload 
condition.  Results are in Table 1a. The Table shows the 
ANOVA comparison between each condition, for each 
subject on the left and right side of the brain. It is possible 
that each condition caused activity on both or on only one 
side of the brain per subject. The presence of a ‘√’ 
indicates that ANOVA showed the conditions were 
significantly different, with confidence of 95%. Out of 40 
pair-wise comparisons in Table 1a, only one comparison 
had no significant differences (both the right and left side 
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of the brain showed insignificant results). These results 
indicate that we successfully addressed our first question.  
Next we tackle our second question. 

a) 
NL v. 
0WL 

DL v. 
0WL 

LS v 
0WL 

HS v 
0WL 

 b) 
LS   v 
0WL 

HS   v 
0WL 

LS v 
HS       

 L R L R L R L R   L R L R L R 
s1 √√ √√ √√ √√  s1 √√  √√ √√  
s2 √√ √√ √√ √√  s2 √√ √√ √√ 
s3 √√ √√ √√ √√  s3 √√ √√ √√ 
s4 √√ √√ √√ √√  s4 √√ √√   √ 
s5 √√ √√ √√ √√  s5 √√ √√ √√ 
s6 √√ √√ √√ √√  s6 √√ √√   √ 
s7 √√ √√ √√ √√  s7 √√ √√ √√ 
s8   √  √√   √  s8 √√   √ √√ 
s9 √√ √√ √ √√  s9 √ √√ √√ 
s10 √√ √√ √√ √  s10 √√ √ √√ 
Table 1: ANOVA results for the left and right side of the 
brain. A ‘√’ denotes that the two conditions were different 
with confidence of 95%.  s1 = subject 1, etc. a) and b) address 
the first and second research questions, respectively. 

2) Preliminary Question 2: Can we use fNIRs to 
distinguish between no, low, and high demands on 
spatial WM? 

To answer our second question, we use our ANOVA 
results (Table 1b) to do pair-wise comparisons of the LS, 
HS, and no workload exercises.  As Table 1b shows, we 
can distinguish between these conditions on one side (often 
both) for all subjects. Therefore, we can distinguish 
between no, low, and high WM demands in users’ brains. 
Now we tackle our primary question. 

3) Primary Question: Can we use well established 
exercises from the cognitive psychology literature on 
spatial WM to shed light on the syntactic workload 
involved in our higher level user interface exercises? 

Clustering the data provides insights into our primary 
research question.  Clustering results for each subject are in 
Figure 7, and Table 2 gives an overview of these results. 
Based on our success addressing our first two research 
questions and our use of established exercises from 
cognitive psychology, we assume that our no workload, LS, 
and HS exercises provide us with benchmark levels of 
spatial WM, where: 

o The spatial WM demands of the no workload exercises 
are less than the demands of the LS exercises, which are 
less than the demands of the HS exercises ( spatial WM 
load of 0WL < LS < HS). 

We look at the similarities between our interface exercises 
and our benchmark spatial WM exercises to draw 
conclusions about the WM demands of the NL and DL UIs. 
We expect the NL interface exercises to cause higher 
spatial WM load than the DL interface exercises. Thus, 
when comparing the brain activity of the NL interface 
exercises with the DL interface exercises, we expect the 
clusters to indicate that the NL interface exercises are 
grouped closer to cognition exercises of known higher 

spatial WM than the DL interface exercises (where spatial 
WM of 0WL < LS < HS).    

 
Figure 7: Clustering for each subject.  (1 = subject 1, etc.) 

As the first row of Table 3 indicates, this was the case for 
90% of our subjects.  In fact, the NL interface exercises 
were the most similar to the known HS cognition exercises 
for 70% of subjects (row 2, Table 2). Cluster results show 
that we successfully addressed our primary research 
question for 90% of our subjects. The spatial WM involved 
in the NL UI was higher than the spatial WM needed to 
work with the DL UI, indicating that the NL condition had 
higher syntactic workload (in this case, spatial WM) than 
the DL condition. This makes sense, as UI designers know 
the benefits of keeping users oriented in hyperspace.   

Findings From Clustering % of 
subjects 

subject 
ID #’s 

The NL UI exercises are grouped more closely 
with exercises of known higher spatial WM 
than the DL UI exercises (all cluster levels). 

90% 
1, 2, 3, 5,
6, 7, 8, 9,

10 

The NL UI exercises are clustered together 
with known HS cognition exercises (1st level 
cluster). 

70% 1, 2, 5, 6,
7, 8, 9 

Table 2: Analysis of cluster results (3rd research question) 

Extension to Adaptive interfaces 
Using fNIRs data as an additional metric for usability 
testing allows us to conduct folding averages across trials 
to remove noise and make generalizations about the 
patterns of activation of our experiment conditions. We 
also foresee brain measurement in the future as an input for 
adaptive systems. To create adaptive fNIRs based systems, 
we need to classify brain patterns on a single trial basis, 
allowing the system to adapt in real time. With this goal in 
mind, we implemented a classifier to test our ability to 
distinguish between our conditions on a single trial basis. 
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We implemented a weighted k-nearest-neighbor classifier 
with a Dynamic Time Warping distance metric [12].   

For each of the 45 experiment tasks, we averaged together 
the channel readings on the left side (L2,L3,L4) and on the 
right side (R2,R3,R4) of the brain. The result was four time 
series representing HbO on the left side of the brain 
(HbO_L), Hb on the left side of the brain (Hb_L), HbO on 
the right side of the brain (HbO_R), and Hb on the right 
side of the brain (Hb_R). We removed one of our nine trials 
of data in order to select the most relevant of the HbO_R, 
HbO_L, Hb_R, and Hb_L time series for classification of 
the eight remaining trials. Using the data from our removed 
trial, we ran ANOVA on each of the HbO_L, HbO_R, 
Hb_L, and Hb_R and we chose the time series that showed 
statistically significant differences between the two tasks 
we wanted to classify.  We used these time series to 
classify the remaining trials. We did this for each trial, 
switching the trial used to choose the relevant channels.   

Single Trial Analysis Results 
We used our KNN classifier with k = 3, (Table 3) to make 
comparisons between brain activity induced by our 
conditions on a single trial basis.  Results in 3a reflect 
research question 1, comparing each condition to the no 
workload conditions.  Results in 3b reflect our second 
research question, where we distinguish between our no 
workload, LS, and HS exercises and between our LS and 
HS exercises. Table 3c shows our accuracy at classifying 
our interface exercises. The last row of Table 3 shows 
average accuracy for each comparison across subjects.  

a) NL v 
0WL 

DL v 
0WL 

LS v 
0WL 

HS v 
0WL 

 b) LS v 
HS 

LS v HS 
v 0WL c) DL v 

NL 
S1 67% 87% 81% 78%  S1 78% 63% S1 64%
S2 67% 77% 89% 67%  S2 87% 62% S2 72%
S3 86% 58% 83% 78%  S3 74% 63% S3 70%
S4 100% 93% 83% 88%  S4 56% 48% S4 64%
S5 74% 64% 64% 65%  S5 61% 47% S5 64%
S6 77% 79% 81% 66%  S6 69% 52% S6 57%
S7 100% 91% 70% 91%  S7 78% 64% S7 62%
S8 72% 58% 71% 88%  S8 40% 33% S8 83%
S9 91% 94% 72% 95%  S9 78% 60% S9 72%

S10 56% 48% 92% 61%  S10 61% 48% S10 67%
avg 79% 75% 79% 78%  avg 68% 54% avg 68%

Table 3: Percentage of instances classified correctly when 
comparing various conditions. s1 = subject 1, etc. a) and b) 
address the first and second research questions, respectively. 
c) compares the DL and NL conditions.  

We see variation between subjects for these comparisons. 
However, average results are promising. We can 
distinguish between low and high spatial WM load with 
nearly 70% average accuracy (3b), between each condition 
and the 0WL condition with nearly 80% (3a) average 
accuracy, and between our two interface exercises with 
68% average accuracy (3c). When distinguishing between 
the three classes of LS, HS, and 0WL (3b), we see that 
subject 8 had accuracy no better than random (33%), but 

the other subjects’ comparisons show promise with respect 
to differentiating between these three classes. 

CONCLUSION 
We presented a novel experiment protocol and a set of 
analysis algorithms that can help UI evaluators, or 
designers of adaptive systems, to gain information about 
the workload experienced by users in the various cognitive 
resources in their brains while they work with computer 
systems. We attempted to push workload measurement out 
of the lab, where workload is manipulated as an  
independent variable,  and into the realm of UI evaluation, 
where users’ workload is a dependant variable, changing in 
unknown ways based on the UI and task. 

We also designed two simplified UIs and a task that were 
intended to map directly to users’ spatial and verbal WM, 
respectively. We ran an experiment to acquire quantitative, 
real time measures of the syntactic (i.e., spatial) workload 
of our UIs. The experiment tied Shneiderman’s theory on 
syntactic and semantic workload to quantifiable brain 
measurements. We believe that this is the first case of 
separating syntactic and semantic workload using fNIRs, 
even though we use a specially constructed interface.  

We chose our UIs and the IR task to show how our 
experiment protocol and analysis procedures can be used to 
measure the syntactic workload of our UIs.  These tasks 
allowed us to target separate cognitive resources and to 
change the syntactic workload (i.e.,spatial WM) while 
keeping the semantic workload (i.e., verbal WM) constant, 
but most UIs and tasks are more complex, overlapping in 
the cognitive resources they require. While separating 
semantic and syntactic workload may not be possible in 
more complex UIs, evaluators can make informed changes 
to UI designs based on the level of workload measured in 
users’ various cognitive resources. In more complex UIs, 
our novel protocol will work in a similar manner.  
Although the established cognitive psychology tasks will 
not parallel our UIs as closely as they did in this 
experiment, the fNIRs analysis algorithms will still show 
similarities and differences between brain activity induced 
by the UIs and by the cognition exercises.   

Also, the experiment protocol and single trial analysis used 
in this experiment can serve as a step toward adaptive UIs. 
One can picture a future adaptive system that trains users 
on a set of known cognition tasks that elicit no, low, and 
high levels of workload on various cognitive resources. 
Then the UI can adapt appropriately based on the user’s 
current workload in each resource.  
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