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Abstract 

Passive brain-computer interfaces are designed to use 

brain activity as an additional input, allowing the 

adaptation of the interface in real time according to the 

user’s mental state. While most current brain computer 

interface research (BCI) is designed for direct use with 

disabled users, our research focuses on passive BCIs 

for healthy users. We employ functional near-infrared 

spectroscopy (fNIRS), a non-invasive brain measure-

ment device, to augment an interface so it uses brain 

activity measures as an additional input channel. Past 

research has measured and classified brain signals that 

are interesting in HCI context, such as mental workload 

and difficulty level of a task. Current work focuses on 

developing a real time fNIRS classification system and 

creating an interface that responds to one of those 

measures by adapting the interface.  
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Introduction 

Brain computer interfaces (BCIs) use brain activity as 

an input for interfaces. Most current work allows disa-

bled patients to communicate with their environment 

with the use of electroencephalography (EEG) [5, 11]. 

However, a new train of thought in the BCI community 

considers brain activity as an additional source of in-
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formation, to augment and adapt the interface instead 

of controlling it directly with the brain. The new meth-

odology focuses on a broader group of users—the gen-

eral population—for whom current BCIs are unpractical 

because of their slow speed of transfer. Passive BCIs 

detect brain activity that occurs naturally during a task 

use it as an additional input, in conjunction with stand-

ard devices such as keyboards and mice [2]. 

The brain measurement used in this research is called 

functional near-infrared spectroscopy (fNIRS). By 

measuring the reemission of near-infrared light sent in 

the brain, this device extrapolates a measure of brain 

activity. This non-invasive and portable technology of-

fers interesting applications for the field of HCI, as it is 

relatively impervious to user movement [9]. Research-

ers have demonstrated fNIRS’ ability to measure brain 

signals such as mental workload levels, emotions, or 

motor activity in healthy participants [4, 8].  

While most work using fNIRS uses offline analyses to 

evaluate the data, the key component of brain comput-

er interfaces is the ability to perform real time anal-

yses. Many argue that their work could be done in real 

time [3, 8], yet we found few fNIRS systems in the 

literature that do [1, 6]. Figure 2 illustrates the basic 

steps involved in brain computer interfaces.  

We have developed a software system that allows for 

real time fNIRS brain signal analysis and machine 

learning classification of affective and workload states, 

called the Online fNIRS Analysis and Classification sys-

tem (OFAC). This system receives and processes brain 

signals and event markers, automatically recognizes 

the current cognitive or affective state using a database 

of previously recoded signals and machine learning 

techniques, and outputs the answer to the interface 

presently used, allowing for the creation of interfaces 

that adapt and change in real time.  

This article presents work done with fNIRS, describes 

the OFAC system, and introduces preliminary work 

showing the reliability and potential of the system.  

Exploring brain signals measured with fNIRS  

fNIRS calculates change in hemoglobin concentrations 

[10] (Figure 1). Our probes measure the brain area 

called the anterior prefrontal cortex located under the 

forehead, an active region that deals with high-level 

processing [7]: working memory, planning, problem 

solving, memory retrieval and attention. We believe in 

the potential of using higher cognitive function in a 

passive BCI. Because of this rich area, we have investi-

gated different signals with HCI potential, including 

difficulty level [3] and mental workload [4]. We ob-

served promising results when assessing the signal of 

those experiments.  

We have also shown fNIRS’ ability to deal with physical 

artifacts and noise common to typical HCI laboratory 

settings, mainly that activities like mouse clicking and 

keyboard typing are acceptable [9].  

Online fNIRS Analysis and Classification 

We designed a flexible, modular architecture for the 

OFAC system (Figure 3), created using Matlab. It allows 

for advantageous substitution of single modules should 

another functionality be required, and accepts multiple 

input signals, such as the combination of fNIRS and 

EEG. OFAC contains four types of modules for data pro-

cessing: modules to receive and record input data (one 

for each type of input); to preprocess data; to filter; 

Figure 1. A probe includes a 

detector (larger square)       

and four light sources      

(smaller squares). 

Figure 2. Basic steps in a brain-

computer interface. 
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and to perform machine learning classification and out-

put the brain signal classification to the interface. The 

current system takes two different types of input: the 

raw brain data, and external markers from the applica-

tion shown to the user. The raw data (from BOXY soft-

ware, ISS Inc.) also includes basic markers related to 

the start and stop of the real fNIRS data when the sen-

sors are correctly in place and the experiment starts, as 

opposed to uncalibrated data. The external markers 

could contain behavioral data, for instance, intended to 

help with data classification. 

 

Figure 3. Architecture of the OFAC system 

Our first evaluation compares a previous offline analy-

sis with our real time analysis [3]. Results show a de-

crease of 10% in classification accuracy (94% to 84%), 

and that a minimum of 10 examples of each class is 

required to obtain a stable accuracy. We consider this 

decrease in performance is outshined by the main ad-

vantage of the analysis, classifying in real time, and the 

ability to reuse this information to adapt the interface.  

The second study demonstrates the online features of 

OFAC: its ability to record, process, classify cognitive 

state signals and adapt simple interfaces in real time. 

We selected two tasks that activate and deactivate the 

prefrontal cortex, respectively playing a game of Tetris 

and showing calm videos. In a first step, we classify the 

data in real time. In the second part, background music 

varies according to the predicted task: slower music for 

relaxing videos, and faster for the game task. We are 

currently evaluating this system through classification 

accuracy, as well as using user satisfaction of the adap-

tation. We believe that user satisfaction is at least as 

important as speed and accuracy, especially for passive 

BCIs, as their main goal is not always to increase 

productivity.  

Conclusion 

Measuring brain signals related to interfaces can lead to 

applications such as interface evaluation and adapta-

tion. Our work explores brain signals measured with 

fNIRS, use them to adapt the interface and close the 

loop by connecting brain signals to the adaptable inter-

face. We are really enthusiastic about the potential for 

fNIRS and similar techniques to greatly enhance how 

people interact with computers. The creation of a brain-

computer interface will open opportunities for adapta-

tion on different brain signals, with a device that is 

portable, non-invasive and safe.  
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