
Facilitating the Parametric Definition of Geometric Properties in
Programming-Based CAD

J. Felipe Gonzalez
Carleton University

Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL
Lille, France

johannavila@cmail.carleton.ca

Thomas Pietrzak
Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL

Lille, France
thomas.pietrzak@univ-lille.fr

Audrey Girouard
Carleton University
Ottawa, ON, Canada
audrey.girouard@carleton.ca

Géry Casiez∗
Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL

Lille, France
gery.casiez@univ-lille.fr

ABSTRACT
Parametric Computer-aided design (CAD) enables the creation of
reusable models by integrating variables into geometric properties,
facilitating customization without a complete redesign. However,
creating parametric designs in programming-based CAD presents
significant challenges. Users define models in a code editor using
a programming language, with the application generating a vi-
sual representation in a viewport. This process involves complex
programming and arithmetic expressions to describe geometric
properties, linking various object properties to create parametric
designs. Unfortunately, these applications lack assistance, making
the process unnecessarily demanding. We propose a solution that
allows users to retrieve parametric expressions from the visual rep-
resentation for reuse in the code, streamlining the design process.
We demonstrated this concept through a proof-of-concept imple-
mented in the programming-based CAD application, OpenSCAD,
and conducted an experiment with 11 users. Our findings suggest
that this solution could significantly reduce design errors, improve
interactivity and engagement in the design process, and lower the
entry barrier for newcomers by reducing the mathematical skills
typically required in programming-based CAD applications.

CCS CONCEPTS
• Human-centered computing→ Interaction techniques.

KEYWORDS
3D programming-based CAD, OpenSCAD, parametric design

ACM Reference Format:
J. Felipe Gonzalez, Thomas Pietrzak, Audrey Girouard, and Géry Casiez.
2024. Facilitating the Parametric Definition of Geometric Properties in
Programming-Based CAD. In The 37th Annual ACM Symposium on User
Interface Software and Technology (UIST ’24), October 13–16, 2024, Pittsburgh,

∗Also with Institut Universitaire de France.

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in The 37th Annual
ACM Symposium on User Interface Software and Technology (UIST ’24), October 13–16,
2024, Pittsburgh, PA, USA, https://doi.org/10.1145/3654777.3676417.

PA, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3654777.
3676417

1 INTRODUCTION
Parametric Computer-Aided Design (CAD) uses parameters to de-
fine object geometry, allowing quick modifications and reusability
[3]. This flexibility supports practices like digital personal fabrica-
tion [2], enabling users to create and share customizable models
[46]. For instance, web applications such as Customizer [32] from
Thingiverse [33] and MakeWithTech [43] enable users to upload
models with exposed parameters, allowing others to generate var-
ious versions of the base models. Most CAD applications use di-
rect manipulation, allowing users to edit models through visual
elements like drag-and-drop, menus, and buttons [44]. They incor-
porate parametric features via constraints, which are rules applied
to control dimensions, positions, or relationships within the model
using modifiable parameters [7, 52]. For example, FreeCAD [47]
lets users set line lengths as constraints linked to spreadsheet cells,
updating the sketch when these values are changed.

Applications like OpenSCAD [27] and JSCAD [36] follow a
Programming-based approach [11]. In Programming-based CAD,
models are defined textually using programming languages, with
the application rendering a visual representation in a viewport after
compilation. Parametric designs are created by defining geometric
properties through variables and arithmetic expressions, keeping
relationships consistent regardless of parameter values. For exam-
ple, a variable height can set both the height of one cube and the
position of another on top of it, ensuring both adjust correctly
when the variable’s value changes. Creating parametric designs in
programming-based CAD applications is challenging due to the
complexity of deriving expressions for geometric properties, re-
quiring math skills and spatial reasoning [11]. Even experts face
difficulties aligning parameters with spatial axes, formulating cor-
rect expressions, and navigating nested transformations [11].

The geometric properties of different model parts are interre-
lated. Consider the OpenSCAD model 6402905 of a parametric "Pot
lid holder" from Thingiverse1, shown in Figure 1. The position of
the highlighted part must be defined relative to the two rounded
spikes. The user must determine the spikes’ positions through spa-
tial transformation definitions to align them with the center of the
1https://www.thingiverse.com/thing:6402905 accessed on 01/09/2024

https://orcid.org/0000-0002-0716-1689
https://orcid.org/0000-0002-2013-7253
https://orcid.org/0000-0003-3223-105X
https://orcid.org/0000-0003-1905-815X
https://doi.org/10.1145/3654777.3676417
https://doi.org/10.1145/3654777.3676417
https://doi.org/10.1145/3654777.3676417
https://www.thingiverse.com/thing:6402905

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA J. Felipe Gonzalez, et al.

highlighted part, as shown in Listing 1. This expression ensures
that changes in the parameters controlling the spikes’ positions au-
tomatically adjust the highlighted part’s placement. In the scenario
where the highlighted part is about to be placed, the application
already has the parametric definitions for the spikes’ sizes and posi-
tions. Allowing users to select components directly within the view
could simplify the process, as visual identification is easier than
code navigation [10, 50]. For example, clicking on a spike in Figure
1 could reveal its parametric definition, enabling users to adjust it
to place the highlighted part accurately. This approach reduces the
need for manual code analysis, speeding up the process.

65 t r ans l a t e ([− width / 2 ,num ∗ (l e ng t h + s p i k e _ t h i c k n e s s) +
s p i k e _ t h i c kn e s s − t h i c kn e s s , 0])

66 cube ([width , t h i c kn e s s , t h i c k n e s s]) ;

Listing 1: Example of parametric definition of a translate in
OpenSCAD

Figure 1: Pot lid holder model from Thingiverse. ID 6402905

We aim to improve the parametric design capabilities within
programming-based CAD applications by introducing bidirectional
programming interactions. Bidirectional programming allows users
to directly leverage the information from the view in the code in
programming-based applications. By analyzing 30 OpenSCADmod-
els from Thingiverse, we found that geometric properties are mainly
linear combinations of variables. Building on the work of Gonzalez
et al. [10], which enabled selecting elements directly in the view,
we extended OpenSCAD to allow users to extract parametric defini-
tions from the view, simplifying model creation. An evaluation with
11 OpenSCAD users demonstrated the effectiveness of the solution,
showing that it reduces design errors, improves interactivity, and
lowers entry barriers by reducing the mathematical skill needed in
programming-based CAD. Our contributions involve a formative
study to understand better how geometric properties are defined in
programming-based CAD applications, a design goal to facilitate
the process of parametric design in these applications, a proof of
concept in OpenSCAD, and a validation of the proposed solution.

Our implementation is available at http://ns.inria.fr/loki/bp.

2 RELATEDWORK
First, we define the interaction paradigms of this work to frame
our findings. Then, we explain different approaches for parametric
design in CAD applications.

2.1 Interaction paradigms
Programming-based CAD refers to applicationswhere users describe
models entirely through coded instructions, with the system render-
ing the result in a viewport [11]. In this paradigm, the code serves as
the complete model description, and any model edits are reflected in
the code. Text-based applications such as JSCad [36], BRL-CAD [42],
and OpenSCAD [27] fall into this category. In addition, CAD appli-
cations that use visual programming, such as BlockSCAD [22] or
Grasshopper [8], are also considered programming-based CAD.

McGuffin and Fuhrman [35] introduce the concept of Bidirec-
tional Programming applications, where users canmodify the output
using both direct manipulation and instructions. In such applica-
tions, changes made to the output through direct manipulation
trigger updates in the code to maintain coherence, as seen in scal-
able vector graphics (SVG) environments like Sketch-N-Sketch [13]
or Twoville [24]. Bidirectional programming CAD applications
[4, 10, 25, 26] adhere to the programming-based CAD paradigm by
keeping the code as the full model description, while also extending
the interaction capabilities to include direct manipulation in the
viewport, as seen in applications such as Antimony [25].

CadQuery [48] is a programming-based framework for modeling
design, using Boundary Representation (BREP) [15] to specify geo-
metric information of objects’ faces, vertices, or edges. Users can
modify a part by selecting it through a query and applying editing
commands. However, deriving queries in complex models can be
challenging and require users to connect the code with the view
mentally. Mathur et al. [34] developed features allowing users to
extract queries through mouse clicks directly from the view where
selecting parts is notably easier [17]. We draw on this concept to
facilitate the retrieval of information from the view.

Gonzalez et al. [10] present a modified version of OpenSCAD
with editing and navigation features and direct manipulation inter-
actions. The application allows users to edit the model directly in
the view, applying spatial transformation through drag-and-drop
interactions. Although features facilitate the editing of the model,
modifications only support spatial transformation with raw num-
bers without using arithmetic expressions and do not facilitate the
design of parametric models. Navigation features allow users to
connect the code and the view with visual cues.

We leverage the concept of bidirectional programming, specif-
ically in Mathur et al. [34] and Gonzalez et al.’s work [10], as the
foundation for developing our solution.

2.2 Parametric design in direct manipulation
CAD applications

Parametric CAD applications implementing a direct manipulation
approach fix geometric properties through constraints [7, 14]. A
constraint is a rule applied to geometric elements within a model
to control dimensions, positions, or relationships between compo-
nents. There are two types of constraints: Geometric and Dimen-
sional [30]. Geometric constraints define the relationship between

http://ns.inria.fr/loki/bp

Facilitating the Parametric Definition of Geometric Properties in Programming-Based CAD UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

two or more elements in the scene. For example, to force two lines
always to keep the same length. Dimensional constraints fix the val-
ues of geometric properties of elements such as positions, sizes, or
angles. Table 1 describes common constraints in CAD applications
such as FreeCAD [40, 47], Fusion360 [20, 21], or AutoCAD [18, 19].

Constraints help define and enforce specific geometric relation-
ships between different design parts. In parametric design, these
constraints are often expressed using variables, which users can
adjust to create various versions of the design [23]. For instance,
consider a box design where a variable defines the width. By ex-
posing this variable as a model parameter, users can easily modify
its value as needed. Subsequently, the application will regenerate
the box with the updated width value. Even for experts, creating
constraints can be challenging. Solutions like CODA [49] assist by
suggesting applicable constraints based on elements in the view.
We drew inspiration from this concept, recognizing that leverag-
ing existing application information can enhance our solution’s
definition of new geometric properties.

Table 1: Common Constraints in Direct Manipulation CAD

Geometric

Coincident: Forces two points or objects to share the same location.
Collinear: Requires two elements to lie on the same straight line.
Concentric: Enforces a common center point for two circles.
Parallel: Aligns two lines or edges to be parallel.
Perpendicular: Forces two lines or edges to meet at a right angle.
Dimensional
Distance: Specifies the distance between two points or objects.
Angle: Defines the angle between two lines or edges.
Radius/diameter: Sets the radius/diameter of a circle or arc.
Length: Determines the length of a line or the size of an object.
Width/height: Specifies the width or height of an object.

It is noteworthy that in direct manipulation CAD applications
users express design intents through tools that are described in a
more explicit language compared to programming-based CAD. As
seen in Table 1, constraints include high-level definitions such as
making two lines collinear. This forces the application to interpret
them and propose a solution. In other words, the user expresses
WHAT they want, and the system seeks a solution to provide
it. This differs from programming-based CAD applications where
users need to describe HOW the models are built.

2.3 Parametric design in programming-based
CAD applications

When designing in programming-based CAD applications, users
define all the geometric properties of the model, except when the
application provides default values to information not provided in
the code. For example, creating a cube without specifying its size
parameter results in a default cube of size 1×1×1 being generated.
Users describe HOW geometric properties are formed through pro-
gramming andmathematical expressions. Understanding how users
in programming-based environments define geometric properties
in parametric designs is crucial to facilitating the design process.

However, beyond code comments, there is often no clear indication
of the users’ intentions behind these definitions. For example, in
the provided example in Listing 1, the rationale behind specific
choices for location and size definitions is not immediately appar-
ent. Furthermore, there is a lack of research investigating design
patterns in defining geometric properties in programming-based
CAD. Chytas and Tsilingiris [5] study how 13 to 17-year-old stu-
dents create programming-based models. Later, Chytas et al. [6]
studied several OpenSCAD models from websites to identify pro-
gramming patterns and design preferences. Their research provides
statistics on various code statements (e.g. frequency of loops, condi-
tionals, or spatial transformation usage) but does not delve into how
geometric properties are interrelated with other objects. Previous
research [11] with OpenSCAD users has shown that users often
struggle to formulate mathematical expressions for parametric mod-
els, a process scarcely supported by existing tools. Furthermore,
users indicated that the definition of objects’ positions and sizes
is frequently relative to the positions and sizes of other objects,
highlighting a complex interdependence in design decisions.

We draw on these works to address the identified challenges.

3 METHOD
We aim to facilitate the parametric design in programming-based
CAD applications. First, we conducted a formative study analyz-
ing 30 OpenSCAD models from Thingiverse to identify how the
geometric properties are defined. Then, based on our findings, we
define the design goals for a bidirectional application that facilitates
the definition of geometric properties in parametric models. Later,
we reused and modified the source code of Gonzalez et al. [10] to al-
low users to retrieve parametric definitions of objects directly from
the view to be reused in the code. Finally, we tested our modified
version with OpenSCAD users and analyzed their user experience.

3.1 Formative study
Programming-based CAD applications allow users to define geo-
metric properties with programming expressions. For example, the
size of a cube can be defined with a raw number, a variable, an
arithmetic expression, or more complex programming structures
such as conditionals. Based on Gonzalez et al.’s survey about the
challenges of OpenSCAD users [11], we hypothesize that users
usually define the positions and sizes of elements as a linear combi-
nation of the positions and sizes of other elements. For example, a
common operation is placing a box on top of another box. In such
a case, the position of the second box is defined in terms of the size
and position of the first cube, as depicted in Listing 2.

4 / / F i r s t cube
5 cube (s i z e = s i z e_ cube_a , c e n t e r = t r u e) ;
6 / / S e c ond cube
7 t r ans l a t e ([0 , 0 , s i z e _ cub e _ a / 2 + s i z e _ cub e_b / 2])
8 cube (s i z e = s i z e_ cube_b , c e n t e r = t r u e) ;

Listing 2: Parametric model of a cube on top of another cube.

With more complex models, the definition of geometric prop-
erties considers the position and orientation of multiple parts. As
a result, we hypothesize that, often, they are described as linear

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA J. Felipe Gonzalez, et al.

combinations defined as translate([tx, ty, tz]) where 𝑡𝑖 =∑
𝛼 𝑗𝑥 𝑗 + 𝑐 , with 𝛼 𝑗 , 𝑐 constants, and 𝑥 𝑗 a variable.
To assess this assumption, we have analyzed 30 models from

Thingiverse. We filtered the customizable models with the option
“Popular Last 7 Days” and downloaded the first ten models. We
repeated the same process with the filters “Popular Last 30 Days”
and “Popular This Year”. Duplicated models were discarded and
replaced with the next ones on the list. Figure 11 in the appendix A
contains all the models used in the formative study.

We modified OpenSCAD to analyze the definition of geometric
properties. The application parses the code into an Abstract Syntax
tree (AST) [1]. Then, it scans the AST to identify code statements
responsible for generating primitive geometries (e.g. spheres or
cylinders) and executing spatial transformations (i.e. translations,
rotation, scale). The application identifies the nature of parameter
definitions, either C1 for non-default raw numerical values, C2 for
a single variable, C3 for a linear combination of variables, C4 for a
non-linear combination, or C5 for a structure involving more com-
plex programming constructs, as delineated in Table 2. For example,
a cube defined as cube(size = [5, size_y, size_z+3]) would
be classified under C1, C2, and C3, whereas a spatial transformation
like translate([0,0, size_x*i]) would be allocated solely to
the C4 category. C1 and C2 are included in the C3 definition, but
we keep the difference seeking a detailed analysis.

Table 2: Categories of expressions in OpenSCAD models.

ID Classification Description

C1 Raw number Non-default numeric. e.g., 4.0
C2 One variable A variable call. e.g., var1
C3 Linear combi-

nation
Linear combination of variables

∑
𝛼𝑖 ·

𝑥𝑖 + 𝑐 . e.g. , 3 + 2*var1 - var2
C4 Polynomial

expression
Non-linear polynomial expressions∑
𝛼𝑖 · 𝑥𝑖 · 𝑦𝑖 . e.g. , 3 + 2*var1*var2

C5 Other Other programming structures such
as conditionals. e.g. , (var1>3)?1:2

The results of the analysis are detailed in Table 3. It is important
to note that the scale statement is barely used in the models. Its
participation in the total of expressions analyzed is only 1%. Fur-
thermore, most expressions within the rotate statements are raw
numbers, with 140 out of 286 rotate statements. Indeed, when
validating the results, we confirmed that in most cases, rotations
are performed at standard angles such as 45 or 90 degrees. Finally,
we confirmed our hypothesis, verifying that most of the positions
(through translate statements) and sizes (through primitive defi-
nitions) are defined as raw numbers (C1), one variable call (C2), or a
linear combination of existing variables (C3). These categories rep-
resent 71% of the total parameters analyzed in primitives definition
(44%) and spatial transformations (27%).

3.2 Design goals
Users define geometric properties by using the relationships be-
tween objects, as outlined in previous research [11] and corrobo-
rated by the formative study. Concerning sizes and positions, state-
ments frequently define these properties as linear combinations of

Table 3: Formative study results. Total and percentual
occurrences per category used to define parameters in
primitives, translation, rotation, and scale statements

Primitive Translate Rotate Scale Total

C1 196 (11%) 130 (7%) 140 (8%) 8 (0.4%) 474 (25%)
C2 294 (16%) 126 (7%) 35 (2%) 2 (0.1%) 457 (25%)
C3 312 (17%) 234 (13%) 29 (2%) 5 (0.3%) 580 (31%)
C4 0 (0%) 48 (3%) 31 (2%) 4 (0.2%) 83 (4%)
C5 26 (1%) 191 (10%) 51 (3%) 0 (0%) 268(14%)
Total 828 (45%) 729 (39%) 286 (15%) 19 (1%) 1862 (100%)

variables, corresponding to linear relationships between elements.
The positioning and sizing of a new model element often depend
on the location and dimensions of another object. Moreover, iden-
tifying a position is straightforward in the visual representation
[10, 34]. A valuable tool would enable the extraction of model infor-
mation to define the geometric properties of other elements within
the code. This information must be readily accessible, allowing
users to understand its spatial implications directly in the visual
representation, where identification is the simplest. In essence, the
design goal is to facilitate the extraction of geometric information
from objects’ parametric definitions in the view for code reuse.

4 BIDIRECTIONNAL PROGRAMMING TO
DEFINE GEOMETRIC PROPERTIES

We have implemented a proof-of-concept that introduces features
that enhance the creation of parametric models using bidirectional
programming. We have re-used the modified version of OpenSCAD
from Gonzalez et al. [10]. Specifically, we reused the implemented
feature to select an element in the view by clicking on it. We modi-
fied this version based onMathur et al. [34] work to fulfill the design
goal by allowing users to retrieve information from the view.

OpenSCAD parses code into an AST and later into the Abstract
CSG Tree, evaluating all programming structures and variables
and replacing them with the raw values, retaining only numeric
information after evaluation. No information about the parametric
definition of objects is stored at this stage. We modified the source
code of OpenSCAD to ensure that CSG tree nodes store the para-
metric definition of the geometric properties used to define them.
Primitives store the definition of the size, whereas spatial transfor-
mation stores the parametric definition of the transformation.

When users position an object relative to another, they are often
concerned with specific locations around it. For instance, when
placing cube A on top of cube B, the translate statement needs
to consider the top of cube B and the bottom of cube A. Unfortu-
nately, most programming-based CAD applications work with a
CSG representation where definitions are abstract, and there is no
information on vertices, faces, or edges [15, 39]. We redefined CSG
node definitions in OpenSCAD to include handles that the user can
use to retrieve the parametric definition of the position of an object.
Handles were added, creating a grid of 3×3×3 points distributed
symmetrically around the object’s center in 3D primitives. For 2D
primitives, the application created a 3×3 grid. Details about the
distribution of handles are shown in Table 4 in Appendix A.

Facilitating the Parametric Definition of Geometric Properties in Programming-Based CAD UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

Non-primitive nodes include a single handle at the node’s po-
sition, covering boolean operations, spatial transformations, or
programming structures. Given a determined handle of a selected
node, the application can define the position of the handle in terms
of the variables used in the code. The application iterates on the
CSG tree to locate the selected node. Then, the selected node pro-
vides the definition of the position of the handle relative to the
node’s center. Later, the application iterates on translate nodes
in the branch of the selected node, adding their definitions to the
position of the handle. Figure 2 describes how OpenSCAD derives
the parametric position of the handle placed in the middle of the
bottom face of the cube (axis z) created by the code in Listing 3.

7 t r ans l a t e ([tx , ty , t z])
8 cube ([s i z e _x , s i z e_y , s i z e _ z]) ;

Listing 3: Handles example

Figure 2: Representation of how OpenSCAD computes the
position of the handle placed at the center of the bottom

face of a cube.

OpenSCAD gathers information from the CSG nodes without fil-
tering out trivial values, such as translating 0 units in one direction,
leading to less readable expressions and requiring an expression
simplification. To streamline the development, we implemented
a Python server that exposes a service to simplify arithmetic ex-
pressions using the simpy library [45]. OpenSCAD sends the raw
expression to the server, which answers with a simplified expres-
sion. If there is a communication error with the server, OpenSCAD
uses the non-simplified expression instead. We developed two fea-
tures to facilitate information retrieval from themodel’s view. These
features, built on the modified version of Gonzalez et al. [10], enable
users to select objects within the model and use the capabilities of
position and delta vector.

4.1 Position
The position feature allows users to determine the location of a
handle in a selected object relative to the origin (i.e. , CSG root
position [0,0,0]) of the view. Users activate this feature by select-
ing the Position button in the menu bar. Then, users can select an
object [10] and the application displays the handles, marking the
object’s center with an always-visible purple handle. The rest of the
handles behave like any other geometry and can be hidden behind
other geometries. This feature aims to provide information to the
user without automatically editing the code, ensuring user control
over the definition of the model [34]. Users can right-click on any

handle to turn it green, indicating that the application has copied
the parametric position to the clipboard so the user can use it in
the code to define a new element property.

Consider the case where a user is designing a cup. The user has
placed a cylindrical base and a cylindrical stem on top, as depicted
in Listing 4. Using the position feature, the user could place a
cylinder for the cup on top of the stem (Figure 3a).

1 t h i c k n e s s = 6 ;
2 r _ba s e = 24 ;
3 r_s tem 1 = 6 ;
4 r_s tem 2 = 3 ;
5 h_stem = 30 ;
6 r _ t op = 18 ;
7 h_top = 33 ;
8 / / Cup
9
10
11 / / Stem
12 t r ans l a t e ([0 , 0 , t h i c k n e s s]) {
13 cyl inder (r 1= r_s tem 1 , r 2= r_s tem 2 , h=h_stem) ;
14 }
15 / / Base
16 cyl inder (r = r_base , h= t h i c k n e s s) ;

Listing 4: Example before using position feature

The user could first select the stem’s cylinder by right-clicking on
it. The user could select the cylinder in the menu displaying the CSG
nodes involved in that part, as depicted in Figure 3b. OpenSCAD
would display the handles, and the user could select the one in the
middle of the top where the cup cylinder will be placed. The handle
would turn green so that the user would have in the clipboard the
definition of the position of that point in terms of the variables used
in the model (Figure 3c). The user can then create a translation,
paste the definition stored in the clipboard as shown in Listing 5,
and add a cylinder to create the cup (Figure 3d).

7 h_top = 33 ;
8 / / Cup
9 t r ans l a t e ([0,0,h_stem+thickness])
10 cyl inder (r = r_ top , h = h_top) ;

Listing 5: Example after using position feature

4.2 Delta Vector
The delta vector feature calculates the vector between two handles.
This arithmetic expression allows aligning a handle of one object
with a handle of another object, establishing a coincidence or a
snapping effect. The process is similar to the position feature but in
a two-step process. Users enable this feature by pressing the delta
vector button in the menu bar and then selecting the object they
want to move. The application marks the center of the object with
always visible purple handles. The rest of the handles behaves like
any other geometry and can be hidden behind other geometries.
The user selects a destination object, and the application also shows
its handles, with centers in purple and others in blue. In this setup,
red points indicate origin points, and blue points mark destination
points. After right-clicking on a red handle, which turns it white, the
user selects the destination point by right-clicking on it. This action

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA J. Felipe Gonzalez, et al.

(a) Preview of a cup in progress. (b) The user select an object

(c) A handle turns green after
right-clicking it. The definition

is stored in the clipboard.

(d) The user place the definition
stored in the clipboard in a

translate to place another object

Figure 3: Position feature allows users to retrieve the
location of an object’s handle relative to the origin.

turns both handles green to inform the user that the system has
placed the parametric definition in the clipboard. The delta vector
feature calculates the difference between the destination and origin
handles, allowing users to determine the necessary transformation
to align the origin and the destination points.

Revisiting the example of a cup, consider the addition of decora-
tive spheres around its upper part. Using the delta vector feature
allows for precise placement. The user selects the sphere and the
cylinder at the top of the piece, prompting the handles to appear on
both. By right-clicking on corresponding handles intended to align,
as shown in Figure 4a, the application generates the exact transfor-
mation [r_top - r_sphere,0, thickness + h_stem + h_top]
and stores it in the clipboard. Inserting it into a translate state-
ment accurately positions the sphere, as seen in Figure 4b. A loop
can be later added to place additional decorations symmetrically.

(a) The user right-clicks the
origin(1) and destination

handles(2) creating the delta
vector in the clipboard.

(b) The user can place the
translate into the sphere

definition to locate it
parametrically.

Figure 4: Delta vector allows users to place one object’s
handle relative to another object’s handle.

5 USER STUDY
We conducted an experiment with eleven OpenSCAD users to eval-
uate the effectiveness of bidirectional programming in simplifying
the parametric design process in programming-based CAD.

The experiment consisted of three parts. Firstly, we collected
demographic information from participants and asked about their
experience with other CAD applications and general programming
languages. In the second part, participants performed a task to
create a parametric design using the original OpenSCAD version.
Upon completion, we discussed the challenges encountered and
their overall experience. We then introduced and demonstrated
the features implemented in OpenSCAD. Participants practiced
briefly with the enhanced OpenSCAD version before creating a
second parametric model, utilizing the new features where appli-
cable. Given the participants’ expertise in OpenSCAD, we deemed
any learning effect negligible and thus did not counterbalance the
use of the two OpenSCAD versions. For consistency, participants
utilized the original version first as a control step, followed by the
modified version. The third part involved participants sharing their
experiences using the new features and discussing the potential
impact of such solutions in programming-based CAD applications.

Each experiment session lasted approximately 90 minutes. We
took detailed notes on participants’ responses and their design
thinking processes. Additionally, we recorded the screen during
the design tasks to assess performance.

5.1 Recruitment and Participants
We recruited participants from social media OpenSCAD channels
on Reddit (r/openscad) and Facebook (OpenSCADAcademy) to con-
duct the experiment using video conferencing. The only require-
ment for participation was proficiency in creating parametric de-
signs with OpenSCAD. Before the sessions, participants were in-
structed to install the AnyDesk remote desktop application [9].
They accessed a Linux machine we prepared using AnyDesk to
perform parametric design tasks during the experiments.

All participants self-identified as male and varied in age between
20 and 69 years old (average: 44.5, standard deviation: 14.2). All
participants, except P3, had four or more years of 3D modeling
experience (average: 8.9y, standard deviation: 5.8). Except for P3, all
participants self-rated with four or more in at least one program-
ming language. Finally, participants self-rated their skill level with
OpenSCAD as follows: Two participants with 2, four participants
with 3, four participants with 4, and one participant with 5.

5.2 Design tasks
Participants performed two parametric design tasks, first using the
original and later our modified version of OpenSCAD. We proposed
two models: model A, a chalice-like model (Figure 5a), and model B,
a box (Figure 5b), aiming to make them comparably challenging in
terms of the number of required primitives, spatial transformations,
and boolean operations. However, we designed them with distinct
structures to avoid redundancy in the design experience. For model
A, participants were required to expose parameters for the size
of the cutouts in the base, the sizes of the holes in the cup, the
height and radius of the cup, and the length of the stem. In Model B,
participants were required to expose parameters for the length of

Facilitating the Parametric Definition of Geometric Properties in Programming-Based CAD UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

the legs, the size of the windows, and the box’s height, width, and
depth. We converted the models into STL files and uploaded them
to the STL online viewer, 3DViewer [29], generating shareable links
that allowed participants to view the models in 3D on their com-
puters. To mitigate order bias, we counterbalanced the sequence:
half of the participants worked on Model A first, followed by Model
B, while the others started with Model B, and then proceeded to
Model A.

(a) Model A. (b) Model B.

Figure 5: Models used in the experiment. Participants
replicated the models, exposing parameters as required

In the first task, participants used the original OpenSCAD ver-
sion. This exercise had two goals: first, to establish a baseline for
comparing the performance of the design process and user expe-
rience with the modified OpenSCAD version; second, to refresh
participants’ understanding of parametric design, facilitating a sub-
sequent discussion about its challenges. After completing the first
design, we asked the participants about their user experience, task
difficulty, and specific challenges in the execution of parametric
designs with OpenSCAD. We then introduced the new OpenSCAD
features using elements from their initial designs. This was followed
by tasks like determining the parametric position of a cube’s corner
or positioning the bottom of a sphere on top of a cube to familiarize
participants with the new features. After about 10 minutes of prac-
tice and answering questions, participants embarked on the second
design task, encouraged to utilize the new features where feasible.
The users then discussed their experience and the potential of such
solutions for programming-based CAD applications.

5.3 Data collection
We recorded the OpenSCAD window activity while participants
worked on both design tasks. Recording using the original version
of OpenSCAD were compared to the recordings of the modified
version of OpenSCAD to evaluate the potential and challenges of
our solution. In addition, upon completing each model, participants
were asked to rank the task’s difficulty. At the end of the second
design exercise, they provided comparative evaluations of both ver-
sions of OpenSCAD. Participants answered Likert scale questions
focused on the functionality and usability of the new features and
engaged in discussions about their perceptions of these solutions.

5.4 Data analysis
We evaluated participants’ feedback on task difficulty, feature func-
tionality, and usability. We summarize their responses. Furthermore,

we recorded participants’ translate statements and their verifica-
tion attempts, comparing these results with those from designs in
the original OpenSCAD version.

5.4.1 Perception on implemented features. Participants shared their
experiences with the difficulty of creating the models and the func-
tionality and usability of the implemented features. All participants
rated the difficulty of both models between Neutral (option 3), Easy
(option 4), and Very Easy (option 5), as shown in Figure 6.

33%

20%

17%

17%

80%

40%

33%

50%

20%

40%

50%

Original

Modified

Original

Modified

M
od

el
A

M
od

el
B

3 4 521Very difficult Very easy

Figure 6: Perceived difficulty of models in the original and
modified version of OpenSCAD using the scale: 1 (Very

Difficult), 2 (Difficult), 3 (Neutral), 4 (Easy), and 5 (Very Easy).

After completing the design exercise using the implemented
features, we asked participants if the modified version of Open-
SCAD made the design task easier or more difficult (Figure 7). All
participants answered above About the same (option 3), with seven
participants with Somewhat Easier (option 4) and four participants
with Much easier (option 5). Then, we asked a similar question but
individually targeted both features. Not all participants used both
features in the design exercise according to personal preference, so
answers in Figure 7 report the percentage of the total of participants
who used the feature and answered the question: seven participants
for the position feature and ten participants for the delta vector
feature. For the position feature, one participant (14.3%) answered
about the same, and six participants (85.7%) answered somewhat
easier. Regarding the delta vector feature, four participants (40%)
answered somewhat easier, and six participants (60%) answered
much easier.

14.3%
40.0%

85.7%
63.6%

60.0%

36.4%

delta vector feature
position feature

modified version of OpenSCAD

3 4 521Much more difficult Much easier

Figure 7: Participants answered if the modified version of
OpenSCAD and each feature made the design easier or more
difficult. 1-Much more difficult, 2–Somewhat more difficult,

3–About the same, 4-Somewhat easier, 5–Much easier

We also asked how difficult it was to use each feature regarding
usability, as depicted in Figure 8. Similar to the previous question,
the answers report the total number of participants who used and
answered the question about the feature. In all cases, all partici-
pants answered between Neutral (option 3), Easy (option 4), and
Very easy (option 5). For the position feature, six participants (58.7%)
answered easy, and one participant (14.3%) answered very easy. Re-
garding the delta vector feature, four participants (44.4%) answered

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA J. Felipe Gonzalez, et al.

neutral, and five participants (55.6%) answered easy. Three partici-
pants indicated that selecting control points with a right-click is
inconvenient. P4 commented “My initial inclination is to left-click
those handles; it’s a little bit extra to remember to right-click the han-
dle”. Furthermore, the control points did not scale when zoomed in,
which was also reported as problematic. For the delta vector, half
of the participants answered Neutral (option 3) and the other half
Easy (option 4). Participants found the process with two objects
difficult to remember and listed some problems. For example, par-
ticipants missed visual cues that guided them through the different
steps. P5 commented “There was no clear prompt indicating what
was copied to the clipboard; it’s unclear if it’s correct. Upon pasting,
the directionality, whether red goes into blue or vice versa, is confus-
ing.” Further, P3 mentioned that using color to indicate the process
can be difficult for some people “I’m not exactly colorblind, but it’s
hard for me to see colors. So it’s nice for people like us if you have an
indication that is not entirely dependent on colors.” However, they
found it easy overall, as commented P1 “It is not obvious but easy”.

40.0% 60.0%

85.7% 14.3%
delta vector feature

position feature

3 4 521Very difficult Very easy

Figure 8: Participants answered how difficult was to use the
implemented features with the scale 1 – Very difficult, 2 –

Difficult, 3 – Neutral, 4 – Easy, 5 – Very easy

Later, we asked participants if they thought that these features
would help them in the design process in their normal modeling
process. All participants answered Yes. Participants found several
advantages. P1 commented that it could help to avoid errors when
designing parametrically: “A few days ago, I positioned objects by
adding variables I believed would bring them to the correct position.
It appeared to be correct in the preview . . .However, when one value
changed, the alignment was disrupted. One part was not where it was
supposed to be. It was only correctly positioned when the variables
coincidentally lined up.”. P2 found that this is more interactive than
other alternatives that try to include “anchors” selectable from the
code. “Tools like Cascade are being used by designers who are trying
to add anchors to objects, making them selectable in the code. What
you’re doing is making a user interface more interactive, combining
the interactivity of Fusion 360 with the capabilities of OpenSCAD,
and putting together the advantages of both worlds. So I think this
is a better solution to the problem.” For instance, P4 and P9 found
that such features could facilitate the transition of people with
little experience into programming-based CAD applications. P9
commented “I think it would be incredibly valuable in helping users
transition from normal CAD to scripted CAD, especially for those
who don’t have a rigorous background in computer science or math”
respectively. Finally, P2, P5, P6, P7, P8, and P10 mentioned that this
would facilitate the deriving of mathematical expressions, making
the design faster. P2 said “When designing objects that need to be
combined to form one design, I often do calculations to position things.
This would mean fewer calculations for me to do”.

5.4.2 Comparing original and modified version of OpenSCAD. Our
analysis focused on participant approaches to defining translate

statements in both the original and the modified versions of Open-
SCAD. When participants defined a translation, they continued to
render the result to verify the correctness of the code. Each ren-
dering attempt was logged and categorized based on the outcome:
Success for correct placements, Wrong location for incorrect place-
ments, Uncertain/false positive for when participants were unsure
or incorrectly deemed the placement, and Syntax errors for errors
in the programming syntax.

Participants generated a total of 94 translate statements using
the original OpenSCAD version (52 in Model A and 42 in Model B)
and 85 with the modified version (42 in Model A and 43 in Model
B). The original version had 155 rendering attempts (averaging
1.64 attempts per translation), while the modified version had 117
attempts (averaging 1.37 attempts per translation), possibly imply-
ing that with our modified version, participants required fewer
attempts to reach a successfully translate definition. The distribu-
tion of these attempts across different categories reveals significant
insights. As the number of spatial transformations differs between
programming styles, we focused on investigating how difficult it is
to correctly define the translate statements defined by the users
in terms of the number of attempts per statement. As illustrated
in Figure 9, the modified version demonstrated a higher success
rate and fewer instances of incorrect placements, uncertain/false
positives, and syntax errors compared to the original version.

62%

79%

50%

62%

17%

10%

34%

30%

9%

8%

8%

1%

12%

2%

8%

6%

Original

Modified

Original

Modified

M
od

el
A

M
od

el
B

Success Wrong location Uncertain/false positive Syntax errors

Figure 9: Attempts to verify a translate statement upon
rendering was logged and classified to compare versions.

During the second design using the modified version of Open-
SCAD, not all translations were defined using the developed fea-
tures. Participants often opted to calculate expressions manually.
Figure 10 depicts the different attempts using the modified ver-
sion of OpenSCAD using the implemented features or describing
the translate manually. The participants actively tried to use the
features. Interestingly, Model B presented more errors using the fea-
tures. We perceived that Model B geometry presented more cases
where the control points were hidden by geometries and cases
where participants could not find a control point in the location
they needed.

6 DISCUSSION
We aim to facilitate the parametric designs in programming-based
CAD applications, particularly on the difficulty of defining objects’
parametric geometric properties based on others’ properties [11].
We evaluated the potential and challenges of our proposed solution.

Participants unanimously agreed that our solution would ease
the design process, helping avoid errors, simplifying mathematical
definitions, enhancing interactivity, and lowering the skill barrier
for newcomers in programming-based CAD. We identified two

Facilitating the Parametric Definition of Geometric Properties in Programming-Based CAD UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

26

1

38

15

13

4

20

6

Success

Wrong placement

Success

Wrong placement

M
od

el
A

M
od

el
B

With features

Without features

Figure 10: Outcomes of attempts to verify translate using
the modified version of OpenSCAD

user scenarios: newcomers and experts. Prior studies indicate new-
comers often avoid design tasks due to high-skill requirements
[16], worsened in programming-based CAD by the semantic gap
between natural and programming languages [28, 31, 41]. Effective
design requires visual inspection to determine the next element’s
parametric position. Our solution reduces this “gulf” between eval-
uation and execution [51] by allowing users to extract positions
directly from the view, bypassing the need to interpret code.

Experts also face challenges with mathematical definitions [11].
They follow mechanical workflows, yet hesitate over parameter
accuracy in complex designs, resorting to trial and error. Our so-
lution speeds up this process by providing accurate positional de-
scriptions, but challenges experienced users accustomed to coding
workflows. Users often find solutions restricted to the features of
the programming language. For instance, JSCAD offers functions
to extract geometry boundary box information (i.e. , minimum and
maximum values in all dimensions) for later use in code [12], but
this still confines users to the code editor. In contrast, our approach
focuses on direct view interaction, allowing easy identification of
positions without deriving them in the code, proven efficient in
other applications [34].

The comparison between the original version of OpenSCAD and
our approach revealed that using the developed features, partici-
pants would require fewer attempts to reach the aimed geometric
properties, resulting in a proportional lower rate of errors and
higher rates of successful attempts. Despite these benefits, experi-
enced users showed resistance to changing established workflows.
P6 noted, “It seems easy to use, but changing the mindset to use
the view for design is challenging.” Similar opinions appeared in
OpenSCAD forums [37, 38], where discussions about integrating
such solutions are limited to programming language features. P11
“This is a philosophical difference among OpenSCAD users regarding
textual programming and visual editing. Some users prefer doing
everything in code.” While resistance may occur, our study suggests
the benefits can facilitate adaptation.

Our implementation has usability challenges, as noted by users.
Some control points were inaccessible due to overlaps with other
volumes, and using right-click for selection was not intuitive. These
feedback points are crucial considerations for future refinements
of our solution. Another issue involves removed geometries in
difference statements. Participants wanted to use the features
to place subtracted elements, but these were not reachable from
the view. Some used background modifiers to make these geome-
tries visible and selectable. Typically, participants placed the cursor
in the statement they were modifying. Applications could make

visible the element creating the code statement where the cursor
is placed, using visual cues [10]. This provides an explicit visual
representation of the part being worked on, helpful for subtracted
geometries. A final challenge is understanding nested transforma-
tions. Participants sometimes wanted to use the position feature to
replace a translate statement, but these were often inside other
translate statements. Since the position feature gives the posi-
tion relative to the CSG root, the retrieved definition is not useful
inside another transformation. The application could consider the
cursor’s position to incorporate previous transformations when
placing new definitions.

7 LIMITATIONS
Our study intended to compare the performance of the original
and the modified version of OpenSCAD. However, the 15-minute
practice session seemed to be insufficient for users to get used to
the logic of the new features. We concluded that a longer use time
would be necessary to evaluate this factor and focused on the user
experience, which we considered more important. Moreover, our
solution only considers a limited set of cases. Specifically, it does not
include cases with spatial transformations other than translate.
Some of our recommendations are related to newcomers, although
none of the participants were newcomers. Further exploration with
beginner users must be carried out to confirm our suggestions.

8 CONCLUSION
We hypothesized a general structure for creating geometric prop-
erties in parametric designs within programming-based CAD ap-
plications. We conducted a formative study to test our hypothe-
sis, analyzing the code of thirty OpenSCAD models sourced from
Thingiverse, which validated our initial assumptions. Subsequently,
we proposed a design goal centered on a bidirectional program-
ming approach to streamline the creation of parametric models
in programming-based CAD applications. We modified the source
code of OpenSCAD to achieve this goal, implementing features that
align with our design objectives. To validate our solution, we con-
ducted an experimental study involving eleven OpenSCAD users
who created parametric designs using both the original and our
modified versions of OpenSCAD. They evaluated their experience
and discussed the challenges and potential of such solutions.

Our findings indicate that allowing users to retrieve information
directly from the view using direct manipulation interactions to
reuse in the code holds significant promise. This approach could
notably reduce design errors, enhance the interactivity and appeal
of the design process, and facilitate the entry for newcomers by
reducing the mathematical skills requirements typically associated
with programming-based CAD applications.

ACKNOWLEDGMENTS
This work was supported and funded by the National Sciences
and Engineering Research Council of Canada (NSERC) through a
Discovery grant (2017-06300) and an Alliance (557253-2020). It was
also supported and funded by the Région Hauts-de-France.

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA J. Felipe Gonzalez, et al.

REFERENCES
[1] Alfred Aho, Monica Lam, Ravi Sethi, and Jeffrey Ullman. 2006. Compilers -

Principles, Techniques, and Tools (2 ed.). Pearson/Addison Wesley, Boston. https:
//dl.acm.org/doi/10.5555/1177220

[2] Alexander Berman, Francis Quek, Robert Woodward, Osazuwa Okundaye, and
Jeeeun Kim. 2020. "Anyone Can Print": Supporting Collaborations with 3D
Printing Services to Empower Broader Participation in Personal Fabrication.
In Proceedings of the 11th Nordic Conference on Human-Computer Interaction:
Shaping Experiences, Shaping Society (NordiCHI ’20). Association for Computing
Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3419249.3420068

[3] Jorge D. Camba, Manuel Contero, and Pedro Company. 2016. Parametric CAD
modeling: An analysis of strategies for design reusability. Computer-Aided Design
74 (May 2016), 18–31. https://doi.org/10.1016/j.cad.2016.01.003

[4] D. Cascaval, M. Shalah, P. Quinn, R. Bodik, M. Agrawala, and A. Schulz. 2022.
Differentiable 3D CAD Programs for Bidirectional Editing. Computer Graphics
Forum 41, 2 (2022), 309–323. https://doi.org/10.1111/cgf.14476

[5] Christos Chytas, Ira Diethelm, and Alexandros Tsilingiris. 2018. Learning pro-
gramming through design: An analysis of parametric design projects in digital
fabrication labs and an online makerspace. In 2018 IEEE Global Engineering Edu-
cation Conference (EDUCON). 1978–1987. https://doi.org/10.1109/EDUCON.2018.
8363478 ISSN: 2165-9567.

[6] C. Chytas, A. Tsilingiris, and I. Diethelm. 2019. Exploring Computational
Thinking Skills in 3D Printing: A Data Analysis of an Online Makerspace.
In 2019 IEEE Global Engineering Education Conference (EDUCON). 1173–1179.
https://doi.org/10.1109/EDUCON.2019.8725202 ISSN: 2165-9567.

[7] Steven Anson Coons. 1963. An outline of the requirements for a computer-
aided design system. In Proceedings of the May 21-23, 1963, spring joint computer
conference (AFIPS ’63 (Spring)). Association for Computing Machinery, New York,
NY, USA, 299–304. https://doi.org/10.1145/1461551.1461588

[8] Scott Davidson. 2023. Grasshopper. https://www.grasshopper3d.com/
[9] AnyDesk Software GmbH. 2024. Anydesk -The smart choice for remote access.

https://anydesk.com/en
[10] J Felipe Gonzalez, Danny Kieken, Thomas Pietrzak, Audrey Girouard, and Géry

Casiez. 2023. Introducing Bidirectional Programming in Constructive Solid
Geometry-Based CAD. In Proceedings of the 2023 ACM Symposium on Spatial User
Interaction (SUI ’23). Association for Computing Machinery, Sydney, Australia,
1–12. https://doi.org/10.1145/3607822.3614521 https://hal.science/INRIA2/hal-
04194045v1.

[11] J. Felipe Gonzalez, Thomas Pietrzak, Audrey Girouard, and Géry Casiez. 2024.
Understanding the Challenges of OpenSCAD Users for 3D Printing. In Pro-
ceedings of the ACM Conference on Human Factors in Computing Systems (CHI
2024). Association for Computing Machinery, Honolulu, Hawaii, USA. https:
//doi.org/10.1145/3613904.3642566 https://hal.science/INRIA2/hal-04475132v1.

[12] JSCAD User Group. 2024. Design guide measurements in JSCAD. https:
//openjscad.xyz/dokuwiki/doku.php?id=en:design_guide_measurements

[13] Brian Hempel, Justin Lubin, and Ravi Chugh. 2019. Sketch-n-Sketch: Output-
Directed Programming for SVG. In Proceedings of the 32nd Annual ACM Sym-
posium on User Interface Software and Technology (UIST ’19). Association for
Computing Machinery, New York, NY, USA, 281–292. https://doi.org/10.1145/
3332165.3347925

[14] R. C. Hillyard and I. C. Braid. 1978. Analysis of dimensions and tolerances in
computer-aided mechanical design. Computer-Aided Design 10, 3 (May 1978),
161–166. https://doi.org/10.1016/0010-4485(78)90140-9

[15] Christoph M. Hoffmann. 1989. Geometric and solid modeling: an introduction.
Morgan Kaufmann, San Mateo, Calif.

[16] Nathaniel Hudson, Celena Alcock, and Parmit K. Chilana. 2016. Understanding
Newcomers to 3D Printing: Motivations, Workflows, and Barriers of Casual
Makers. In Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems (CHI ’16). Association for Computing Machinery, New York, NY, USA,
384–396. https://doi.org/10.1145/2858036.2858266

[17] Edwin Hutchins, James Hollan, and Donald Norman. 1985. Direct Manipulation
Interfaces. Human-computer Interaction 1 (Dec. 1985), 311–338. https://doi.org/
10.1207/s15327051hci0104_2

[18] Autodesk Inc. 2024. AutoCAD for Mac & Windows | 2D/3D CAD Software |
Autodesk. https://www.autodesk.ca/en/products/autocad/overview

[19] Autodesk Inc. 2024. AutoCAD LT 2024 Help | About Parametric Drawing and
Constraints | Autodesk. https://help.autodesk.com/view/ACDLT/2024/ENU/
?guid=GUID-899E008D-B422-4DF2-AC8D-1A4F5701ED4E

[20] Autodesk Inc. 2024. Fusion 360 | 3D CAD, CAM, CAE, & PCB Cloud-Based
Software | Autodesk. https://www.autodesk.com/products/fusion-360/overview

[21] Autodesk Inc. 2024. Fusion Help | Constraints in sketches | Autodesk. https:
//help.autodesk.com/view/fusion360/ENU/?guid=SKT-CONSTRAINTS

[22] BlocksCAD Inc. 2023. BlocksCAD. https://www.blockscad3d.com/
[23] R. Joan-Arinyo and A. Soto-Riera. 1999. Combining constructive and equational

geometric constraint-solving techniques. ACM Transactions on Graphics 18, 1
(1999), 35–55. https://doi.org/10.1145/300776.300780

[24] Chris Johnson. 2023. Computational Making with Twoville. Journal of Computing
Sciences in Colleges 38, 8 (2023), 39–53.

[25] Matthew Keeter. 2024. Antimony. https://www.mattkeeter.com/projects/
antimony/3/

[26] Matt Keeter. 2024. libfive. https://libfive.com/
[27] Marius Kintel. 2024. OpenSCAD. http://openscad.org
[28] Amy J. Ko, Brad A. Myers, and Htet Htet Aung. 2004. Six Learning Barriers in

End-User Programming Systems. In 2004 IEEE Symposium on Visual Languages -
Human Centric Computing. Rome, Italy, 199–206. https://doi.org/10.1109/VLHCC.
2004.47

[29] Viktor Kovacs. 2024. Online 3D Viewer. https://3dviewer.net
[30] V. C. Lin, D. C. Gossard, and R. A. Light. 1981. Variational geometry in computer-

aided design. ACM SIGGRAPH Computer Graphics 15, 3 (1981), 171–177. https:
//doi.org/10.1145/965161.806803

[31] L. Ma, J. Ferguson, M. Roper, and M. Wood. 2011. Investigating and improving
the models of programming concepts held by novice programmers. Computer
Science Education 21, 1 (March 2011), 57–80. https://doi.org/10.1080/08993408.
2011.554722 Publisher: Routledge.

[32] LLC MakerBot Industries. 2024. Customizer by MakerBot on Thingiverse -
Thingiverse. https://www.thingiverse.com/app:22

[33] LLCMakerBot Industries. 2024. Thingiverse - Digital Designs for Physical Objects.
https://www.thingiverse.com/

[34] Aman Mathur, Marcus Pirron, and Damien Zufferey. 2020. Interactive Program-
ming for Parametric CAD. Computer Graphics Forum 39, 6 (2020), 408–425.
https://doi.org/10.1111/cgf.14046

[35] Michael J. McGuffin and Christopher P. Fuhrman. 2020. Categories and Com-
pleteness of Visual Programming and Direct Manipulation. In Proceedings of
the International Conference on Advanced Visual Interfaces (AVI ’20). Association
for Computing Machinery, New York, NY, USA, 1–8. https://doi.org/10.1145/
3399715.3399821

[36] Rene K Mueller, Z3 Development, Mark Moissette, and et al. JSCAD developers.
2024. JSCAD - JavaScript CAD. https://openjscad.xyz/

[37] Filip Mulier. 2013. Functions that can query a given 3D shape and provide size
or location info · Issue #301 · openscad/openscad. https://github.com/openscad/
openscad/issues/301

[38] Laird Popkin. 2014. request: object as variable w/ introspection · Issue #954 ·
openscad/openscad. https://github.com/openscad/openscad/issues/954

[39] Aristides G. Requicha. 1980. Representations for Rigid Solids: Theory, Methods,
and Systems. Comput. Surveys 12, 4 (1980), 437–464. https://doi.org/10.1145/
356827.356833

[40] Jürgen Riegel, Werner Mayer, and et al. FreeCAD Contributors. 2024. Sketcher
Micro Tutorial - Constraint Practices - FreeCAD Documentation. https://wiki.
freecad.org/Sketcher_Micro_Tutorial_-_Constraint_Practices

[41] Majid Rouhani, Miriam Lillebo, Veronica Farshchian, and Monica Divitini. 2022.
Learning to Program: an In-service Teachers’ Perspective. In 2022 IEEE Global
Engineering Education Conference (EDUCON). 123–132. https://doi.org/10.1109/
EDUCON52537.2022.9766781 ISSN: 2165-9567.

[42] Himanshu Sekhar Nayak, Sadeep Weerasinghe, Daniel Rossberg, Vidit Jain, and
Christopher Sean Morrison. 2024. BRL-CAD: Open Source Solid Modeling. https:
//brlcad.org/

[43] Irv Shapiro. 2024. MakeWithTech Blog. https://www.makewithtech.com/
[44] Ben Shneiderman. 1983. Direct Manipulation: A Step Beyond Programming

Languages. Computer 16, 8 (1983), 57–69. https://doi.org/10.1109/MC.1983.
1654471

[45] Team SimPy. 2024. Overview — SimPy 4.1.1 documentation. https://simpy.
readthedocs.io/en/latest/index.html

[46] Evgeny Stemasov, Tobias Wagner, Jan Gugenheimer, and Enrico Rukzio. 2020.
Mix&Match: Towards Omitting Modelling Through In-situ Remixing of Model
Repository Artifacts in Mixed Reality. In Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems (CHI ’20). Association for Computing
Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3313831.3376839

[47] Abdullah Tahiriyo, Alexander Golubev (Fat-Zer), Bernd Hahnbach, and et al.
FreeCAD Contributors. 2024. FreeCAD: Your own 3D parametric modeler. https:
//www.freecadweb.org/

[48] Adam Urbanczyk, Jeremy Wright, Marcus Boyd, and et al. CadQuery developers.
2024. CadQuery. https://github.com/CadQuery/cadquery

[49] TomVeuskens, FlorianHeller, and Raf Ramakers. 2021. CODA: ADesign Assistant
to Facilitate Specifying Constraints and Parametric Behavior in CAD Models.
(2021), 10 pages, 877. https://doi.org/10.20380/GI2021.11

[50] Bret Victor. 2013. Bret Victor - The Future of Programming. https://vimeo.com/
71278954

[51] Catherine G. Wolf and James R. Rhyne. 1987. A Taxonomic Approach to Under-
standing Direct Manipulation. Proceedings of the Human Factors Society Annual
Meeting 31, 5 (Sept. 1987), 576–580. https://doi.org/10.1177/154193128703100522
Publisher: SAGE Publications.

[52] Qiang Zou, Zhihong Tang, Hsi-Yung Feng, Shuming Gao, Chenchu Zhou, and
Yusheng Liu. 2022. A review on geometric constraint solving. https://doi.org/10.
48550/arXiv.2202.13795

https://dl.acm.org/doi/10.5555/1177220
https://dl.acm.org/doi/10.5555/1177220
https://doi.org/10.1145/3419249.3420068
https://doi.org/10.1016/j.cad.2016.01.003
https://doi.org/10.1111/cgf.14476
https://doi.org/10.1109/EDUCON.2018.8363478
https://doi.org/10.1109/EDUCON.2018.8363478
https://doi.org/10.1109/EDUCON.2019.8725202
https://doi.org/10.1145/1461551.1461588
https://www.grasshopper3d.com/
https://anydesk.com/en
https://doi.org/10.1145/3607822.3614521
https://doi.org/10.1145/3613904.3642566
https://doi.org/10.1145/3613904.3642566
https://openjscad.xyz/dokuwiki/doku.php?id=en:design_guide_measurements
https://openjscad.xyz/dokuwiki/doku.php?id=en:design_guide_measurements
https://doi.org/10.1145/3332165.3347925
https://doi.org/10.1145/3332165.3347925
https://doi.org/10.1016/0010-4485(78)90140-9
https://doi.org/10.1145/2858036.2858266
https://doi.org/10.1207/s15327051hci0104_2
https://doi.org/10.1207/s15327051hci0104_2
https://www.autodesk.ca/en/products/autocad/overview
https://help.autodesk.com/view/ACDLT/2024/ENU/?guid=GUID-899E008D-B422-4DF2-AC8D-1A4F5701ED4E
https://help.autodesk.com/view/ACDLT/2024/ENU/?guid=GUID-899E008D-B422-4DF2-AC8D-1A4F5701ED4E
https://www.autodesk.com/products/fusion-360/overview
https://help.autodesk.com/view/fusion360/ENU/?guid=SKT-CONSTRAINTS
https://help.autodesk.com/view/fusion360/ENU/?guid=SKT-CONSTRAINTS
https://www.blockscad3d.com/
https://doi.org/10.1145/300776.300780
https://www.mattkeeter.com/projects/antimony/3/
https://www.mattkeeter.com/projects/antimony/3/
https://libfive.com/
http://openscad.org
https://doi.org/10.1109/VLHCC.2004.47
https://doi.org/10.1109/VLHCC.2004.47
https://3dviewer.net
https://doi.org/10.1145/965161.806803
https://doi.org/10.1145/965161.806803
https://doi.org/10.1080/08993408.2011.554722
https://doi.org/10.1080/08993408.2011.554722
https://www.thingiverse.com/app:22
https://www.thingiverse.com/
https://doi.org/10.1111/cgf.14046
https://doi.org/10.1145/3399715.3399821
https://doi.org/10.1145/3399715.3399821
https://openjscad.xyz/
https://github.com/openscad/openscad/issues/301
https://github.com/openscad/openscad/issues/301
https://github.com/openscad/openscad/issues/954
https://doi.org/10.1145/356827.356833
https://doi.org/10.1145/356827.356833
https://wiki.freecad.org/Sketcher_Micro_Tutorial_-_Constraint_Practices
https://wiki.freecad.org/Sketcher_Micro_Tutorial_-_Constraint_Practices
https://doi.org/10.1109/EDUCON52537.2022.9766781
https://doi.org/10.1109/EDUCON52537.2022.9766781
https://brlcad.org/
https://brlcad.org/
https://www.makewithtech.com/
https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1109/MC.1983.1654471
https://simpy.readthedocs.io/en/latest/index.html
https://simpy.readthedocs.io/en/latest/index.html
https://doi.org/10.1145/3313831.3376839
https://www.freecadweb.org/
https://www.freecadweb.org/
https://github.com/CadQuery/cadquery
https://doi.org/10.20380/GI2021.11
https://vimeo.com/71278954
https://vimeo.com/71278954
https://doi.org/10.1177/154193128703100522
https://doi.org/10.48550/arXiv.2202.13795
https://doi.org/10.48550/arXiv.2202.13795

Facilitating the Parametric Definition of Geometric Properties in Programming-Based CAD UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

A APPENDIX

Table 4: Description of Handles for Primitive Shapes.

Cube (27 points): Cube nodes create a grid of 3x3x3 points, including 1 point
in the center, 1 at each corner (8 points), 1 in the center of each face (6 points),
and 1 in the middle of each edge (12 points).

Sphere (27 points): Spheres create a boundary cube using the diameter as
the size for height, width and depth. The node places handles on the boundary
cube following the same distribution as the cube nodes.

Cylinder (27 points): Cylinder nodes form a boundary cuboid, with its
bottom and top square faces sized by the cylinder parameters d1 and d2, re-
spectively. The height of the cuboid is determined by h. Handles are positioned
on the cuboid’s boundary, following the cube nodes’ distribution pattern.

Square (9 points): Square nodes create a grid of 3x3 points, including 1 point
in the center, 1 at each corner (4 points), and 1 at the middle of each edge (4
points).

Circle (9 points): Circle nodes create a boundary square using the diameter
as the size of the height and width. 1 point in the center and 1 at each extreme
along each axis (4 points).

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA J. Felipe Gonzalez, et al.

(i) Multi-Color Pencil Cup
Remix, Thing:6291495

(ii) Master Lock M1 Key,
Thing:6289846

(iii) Gridfinity Kcup
Holder, Thing:6284181

(iv) Kumihimo Disk,
Thing:6290477

(v) Spare Peg For Ikea
Hammer, Thing:6287601

(vi) Customized Kettle
Whistle, Thing:6291759

(vii) Hook On A Plate,
Thing:6287141

(viii) Turret Cap Generator,
Thing:6292455

(ix) Cable Hook,
Thing:6288817

(x) Door Hook 1 Angle,
Thing:6287795

(xi) Parametric Porch
Hook, Thing:6286541

(xii) Filament Spool
Holder Frame,
Thing:6255969

(xiii) Battery End Caps,
Thing:6248029

(xiv) Small Customizable
Box, Thing:6266913

(xv) Infinity Cube
Customizer,

Thing:6249758

(xvi) Customizable Key
Tag, Thing:6249968

(xvii) Halloween Spider,
Thing:6253273

(xviii) Filter Basket For
Fluval Evo, Thing:6267303

(xix) Halloween Candle,
Thing:6267335

(xx) Modular Drawer
Divider, Thing:6250410

(xxi) Twist-Lock Hose
Flange, Thing:5988719

(xxii) Knurled Screw Lid
Container, Thing:6095952

(xxiii) 3D Snowflake
Ornament, Thing:5673707

(xxiv) Shotgun Shell Case,
Thing:6153068

(xxv) Customizable
Jar/Bottle, Thing:6211287

(xxvi) Parametrizable
Rugged Box,

Thing:5983067

(xxvii) Customizable Cable
Tie, Thing:5789087

(xxviii) Phone Mount,
Thing:5816088

(xxix) Folding Utility
Knife, Thing:6117454

(xxx) Halloween
Jack-O’-Lantern,
Thing:6221369

Figure 11: OpenSCAD models taken from Thingiverse for the formative study.

https://www.thingiverse.com/thing:6291495
https://www.thingiverse.com/thing:6289846
https://www.thingiverse.com/thing:6284181
https://www.thingiverse.com/thing:6290477
https://www.thingiverse.com/thing:6287601
https://www.thingiverse.com/thing:6291759
https://www.thingiverse.com/thing:6287141
https://www.thingiverse.com/thing:6292455
https://www.thingiverse.com/thing:6288817
https://www.thingiverse.com/thing:6287795
https://www.thingiverse.com/thing:6286541
https://www.thingiverse.com/thing:6255969
https://www.thingiverse.com/thing:6248029
https://www.thingiverse.com/thing:6266913
https://www.thingiverse.com/thing:6249758
https://www.thingiverse.com/thing:6249968
https://www.thingiverse.com/thing:6253273
https://www.thingiverse.com/thing:6267303
https://www.thingiverse.com/thing:6267335
https://www.thingiverse.com/thing:6250410
https://www.thingiverse.com/thing:5988719
https://www.thingiverse.com/thing:6095952
https://www.thingiverse.com/thing:5673707
https://www.thingiverse.com/thing:6153068
https://www.thingiverse.com/thing:6211287
https://www.thingiverse.com/thing:5983067
https://www.thingiverse.com/thing:5789087
https://www.thingiverse.com/thing:5816088
https://www.thingiverse.com/thing:6117454
https://www.thingiverse.com/thing:6221369

Supplemental Material for "Facilitating the Parametric Definition
of Geometric Properties in Programming-Based CAD"

J. Felipe Gonzalez
Carleton University

Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL
Lille, France

johannavila@cmail.carleton.ca

Thomas Pietrzak
Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL

Lille, France
thomas.pietrzak@univ-lille.fr

Audrey Girouard
Carleton University
Ottawa, ON, Canada
audrey.girouard@carleton.ca

Géry Casiez∗
Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL

Lille, France
gery.casiez@univ-lille.fr

Supplementary material for the paper "Facilitating the Parametric Definition of
Geometric Properties in Programming-Based CAD" available at https://doi.org/10.
1145/3654777.3676417

We expand on the details of our user study. We first present
comprehensive demographic information of the participants. Then,
we present the extended observations of the experiment.

1 DEMOGRAPHIC INFORMATION
We report the demographics of the participants and their previous
experience with CAD applications in Table 1. All participants self-
identified as male and varied in age: one was between 20 and 29,
three were between 30 and 39, four were between 40 and 49, one
was between 50 and 59, and two were between 60 and 69 (average:
44.5, standard deviation: 14.2). All participants, except P3, had four
or more years of 3D modeling experience (average: 8.9y, standard
deviation: 5.8). Except for P3, all participants self-rated with four or
more in at least one programming language. All participants except
P4 and P7 had experience with other CAD applications, but only P3,
P6, P8, P9, and P10 self-rated with 3 or more at least one of them.
Finally, participants self-rated their skill level with OpenSCAD as
follows: Two participants with 2, four participants with 3, four
participants with 4, and one participant with 5.

2 AUTHORING STRATEGIES IN PARAMETRIC
DESIGN IN PROGRAMMING-BASED CAD

We analyzed the design process of participants creating parametric
designs in the original version of OpenSCAD.We detail our findings
on authoring strategies related to common behaviors in the design
process, common errors, and strategies.

∗Also with Institut Universitaire de France.

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in The 37th Annual
ACM Symposium on User Interface Software and Technology (UIST ’24), October 13–16,
2024, Pittsburgh, PA, USA, https://doi.org/10.1145/3654777.3676417.

Table 1: Demographics and self-rated skill level in CAD
applications and programming languages. Participants
self-rated their skill level on the scale: 1 (Novice), 2
(Advanced Beginner), 3 (Competent), 4 (Proficient), 5
(Expert). The level reported in the category Other

Applications and Programming languages is the highest
rank expressed by the participant.

Pa
rti
ci
pa
nt

Ag
e

Ra
ng

e

3D
M
od

el
in
g

Ex
pe
rie

nc
e
(y
)

O
pe
nS

CA
D

O
th
er

ap
pl
ic
at
io
ns

Pr
og

ra
m
m
in
g

la
ng

ua
ge
s

P1 40-49 8 3 FreeCAD (1) Python,PHP (5)
P2 60-69 9 5 Rhino (2) C++ (5)
P3 60-69 2 3 Fusion360 (3) Python(1)
P4 50-59 10 3 Python, C, JS (5)
P5 30-39 18 4 Fusion360 (1) Javascript (4)
P6 30-39 20 2 Rhino (4) C++ (3)
P7 40-49 12 4 Python, C, C#, JS (5)
P8 30-39 5 4 Fusion360 (4) Python, C++, JS (4)
P9 20-29 4 3 FreeCAD (4) Python (4)
P10 40-49 5 4 TinkerCAD (4) Python, C++ (3)
P11 40-49 5 2 AudtoCAD (3) C++ (5)

2.1 Parametric design
The approaches of the participants to creating parametric designs
in OpenSCAD were analyzed through screen recordings, revealing
a significant anticipatory mental process. Initially, all participants
focused on setting up parameters, with some attempting to antic-
ipate all necessary parameters for the entire model, while others
concentrated on parameters for specific sections, revisiting the cre-
ation process as needed. Regardless of the approach, additional
parameters were often introduced as the design progressed.

All participants mentioned they would try to define the geomet-
ric properties parametrically when possible. Indeed, none of the
geometric properties were defined with raw numbers, and partic-
ipants frequently asked about the relationship of an object with
others to better generalize the definition of the geometric proper-
ties. For instance, common questions were related to the position of
the spheres in model A in relation to the cup height or the position
of the windows in the box of model B.

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA J. Felipe Gonzalez, et al.

All participants needed to play with the parameter values at
some point because the initial ones did not allow them to have a
good preview with correct proportions.

2.2 Design style
Participants split the design into sub-parts and designed them sep-
arately, although the way to split the design varied. For example,
in the case of model B, some participants divided the design in two:
the box and the legs. Nine participants opted to design the box as a
cube with subtracted parts. However, P2 and P10 created the box
as a union of different walls.

Three participants followed the strategy of creating subparts at
the origin and then removing them from the scene by commenting
on the code statement to continue with the next subpart. When all
subparts were completed, the participants started by placing the
bottom part and used translate statements to place each part on
top of the other. The rest of the participants created the designs
cumulatively without removing elements.

2.3 Defining positions
In creating parametric designs using OpenSCAD, participants ex-
hibited a consistent commonmethodology and encountered specific
challenges. Initially, they aimed to mentally locate the center of the
object’s coordinate system, accounting for any preceding spatial
transformations and the object’s center. Then, axis by axis, partici-
pants started to find the required translation based on the existing
variables.

For example, consider the base of model A. Initially, some par-
ticipants constructed a cylinder to serve as the base. Then, this
cylinder was enclosed within a difference block to incorporate
cube-shaped cutouts along its edges. Initially, a cube geometry not
centered (i.e. , with the parameter center set to false)—is created.
Subsequently, a translate transformation is applied to position
this cutout, typically along the positive ’x’ axis, following the syn-
tax’s axis order. The process involves initially positioning the cube’s
moving center at the origin by adding the cylinder’s radius (or half
its diameter) to align it with the cylinder’s edge. Then, participants
subtract half of the cube’s x-dimension to embed the cube halfway
into the cylinder. A similar approach is taken for the ’y’ axis, while
for ’z,’ the cylinder’s height is subtracted.

This process involves identifying the object’s center being ma-
nipulated, adjusting its position relative to other components in the
design by considering their dimensions, and iteratively applying
addition or subtraction as needed. Common errors encountered in
this process include:

(1) Neglecting the specific center that the translate operation
targets. Spatial transformationsmight use a center that varies
based on the geometric center of the object. For example,
cube(center = true) centers the cube’s geometry at the
origin, while cube() or cube(center = false) places the
cube’s corner at the origin. This requires considering an
offset for translations and possibly adjusting the rotation
axis when rotating for centered versus non-centered objects.

(2) Misinterpreting the multipliers needed for positioning. For
instance, participants occasionally miscalculate the offset

using a quarter instead of half of the object’s dimension,
leading to trial and error to get the desired visual outcome.

(3) Misinterpreting the coordinate system’s orientation and mis-
takenly applying the wrong sign to variables. Participants
accurately identified the necessary variables and their multi-
plier factors but occasionally hesitated on the sign, adding
when they should subtract, indicating a disconnection be-
tween spatial conceptualization and code expression.

(4) Confusing variables, particularly in complex expressions
involvingmultiple variables, lead to the inclusion of incorrect
variables in computations.

(5) Difficulties in mathematically deriving complex expressions
when dealing with subtracted elements not visually repre-
sented in the model. To counteract this, some participants
temporarily removed elements from difference blocks for
verification or used modifiers for visual guidance, reintegrat-
ing elements when satisfied.

Strategies to address these errors typically involved trial and
error with variable factors, signs, and meticulous code examination
to ensure accurate expression definition. Positioning subtracted
elements posed a significant challenge due to the lack of visual
representation. To address this issue, participants rendered parts
outside the difference or intersection statements. They also
used the OpenSCAD modifiers, special characters for debugging,
to make visible subtracted elements.

2.4 Ensuring overlapping
Another common strategy involved creating a variable with a min-
imal value to ensure necessary overlap. OpenSCAD provides a
preview mode with a fast rendering but slightly less accurate. Par-
ticipants frequently utilized preview mode in OpenSCAD due to
its speed advantage. However, this mode demonstrates limitations
in CSG expression. Given the abstract nature of CSG definitions,
transitioning to geometric representation can exhibit unintended
behaviors in preview mode. Specifically, when elements theoreti-
cally align perfectly, their visual representation might not clearly
depict this coincidence. For instance, in scenarios where two cubes
should intersect on a face, the application may fail to execute the
intended subtraction if they are precisely coincident. Participants
introduced a "delta" variable to bypass this issue, slightly enlarging
the elements to ensure overlapping. This adjustment ensures that
the geometric calculations accurately reflect the desired behavior,
addressing the preview mode’s imperfections.

	Abstract
	1 Introduction
	2 Related work
	2.1 Interaction paradigms
	2.2 Parametric design in direct manipulation CAD applications
	2.3 Parametric design in programming-based CAD applications

	3 Method
	3.1 Formative study
	3.2 Design goals

	4 Bidirectionnal programming to define geometric properties
	4.1 Position
	4.2 Delta Vector

	5 User study
	5.1 Recruitment and Participants
	5.2 Design tasks
	5.3 Data collection
	5.4 Data analysis

	6 Discussion
	7 Limitations
	8 Conclusion
	Acknowledgments
	References
	A Appendix

